

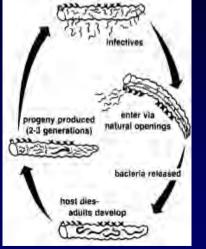
Advances in Entomopathogenic Nematode *In Vivo* Production and Application Methodology

David Shapiro-Ilan¹, Juan A. Morales-Ramos², M. Guadalupe Rojas², and W. Louis Tedders³

¹USDA-ARS, SE Fruit and Tree Nut Research Laboratory, Byron, GA USA ²USDA-ARS, National Biological Control Laboratory, Stoneville, MS USA ³Southeastern Insectaries Inc., Perry, GA USA

Agricultural Research Service

Advances in Entomopathogenic Nematode *In Vivo* Production and Application Methodology


Outline:

- Introduction
- <u>Production</u> Standard approaches
 - Improved in vivo production
 - insects, production system, nematodes
- <u>Application</u> Targets (N. America) Advancements in Application

Entomopathogenic Nematodes (EPNs) Steinernematidae & Heterorhabditidae

Commercialized Species

- *Heterorhabditis bacteriophora*
- H. indica
- *H. marelatus*
- *H. megidis*
- H. zealandica

- Steinernema carpocapsae
- S. feltiae
- S. glaseri
- S. kushidai
- S. riobrave
- S. scapterisci

> 13 commercial producers in US, Europe, Asia (Kaya et al. 2006)

Production: Approaches

- In vivo culture
- In vitro: solid culture
- *In vitro*: liquid culture

In Vivo Culture

Basic Method

- Two dimensional process – a system of shelves & draws
- Often based on White trap
- Inoculation
- Incubation and Harvest
- Concentrate and Clean (automatic separation, antimicrobials)
- Storage

Factors Affecting Yield

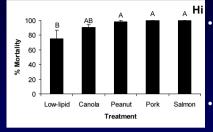
- Insect: *Galleria mellonella*, *Tenebrio molitor*, others (bottom line = cost per IJ yield)
- Inoculation method
- Dose
- Host density
- Environment: RH, temperature
- Nematode sp or strain, e.g., 40,000 per G. mellonella in S. glaseri & >300,000 in H. indica

In Vivo Culture

• <u>Positive</u>: Low tech, low capital input, easy to achieve quality (though problems exist)

- <u>Negative</u>: Scalability, Cost (labor & insect "media")
- Areas to Improve:
 - Media quality and efficiency of production
 - Production process/automation to reduce labor
 - Nematodes (quality of beneficial traits)
- Our Focus: Improvement of in vivo culture using

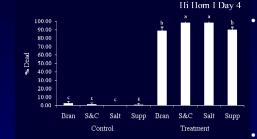
Tenebrio molitor as the host



Improved *In Vivo* Production: Improving the Media

- First Step: Grow your own insects!
- Next Step: Increase efficiency of insect host production (decreasing costs) & improve quality of nematodes
- For improving insect quality see the talk of Morales-Ramos et al.! (also, Morales et al. 2010. J. Entomol. Sci.)
- For nematodes: targets for improvement = insect susceptibility, nematode yield, and virulence

Improved *In Vivo* Production: Improving the Media



Effects of lipids in *T. molitor* diet on susceptibility to *H. indica*

1st Round: Discovered that lipid & protein content in host diets affects nematode virulence & fitness (can be positive or negative) E.g., lipids benefit *H. indica*

(Shapiro-Ilan, Rojas, Morales-Ramos, Lewis, Tedders, 2008, J. Nematol)

Improved *In Vivo* Production: Improving the Media

Effects of salts & cholesterol in host diet on susceptibility to *H. indica*

2nd Round: Discovered that certain salt & cholesterol content in host diets improves host susceptibility & nematode virulence

 3rd Round: Combined ingredients lipid + salt & cholesterol benefits to achieve optimum diet (data not shown)

Improving the Production Process Automation to Reduce Labor


- <u>Goal</u>: Complete mechanization of the *in vivo* process, from rearing the insects to the nematode package
- Inoculation automated sprays, & optimization of inoculation density/rate
- Automated harvest deposited to final

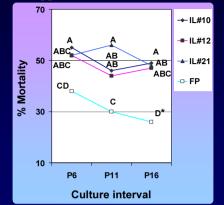
package

Improving the Nematodes

- Screen for the best species for primary target host(s)
- Discovery of new species/strains (e.g., Sr, Ss, GPS11)
- Hybridization or selection of desired traits, e.g., hybridization to increase environmental tolerance
- (Shapiro-Ilan et al. 2005; Mukaka et al. 2010)
- Molecular/genetic Methods (Gaugler et al. 1997)

Strain Stability: During Nematode Culture Once you have a good strain, how do you keep it?

• When biocontrol agents including nematodes are cultured repeatedly, deterioration can occur in beneficial traits e.g., virulence, fecundity, environmental tolerance, etc. (Shapiro et al 1996; Wang & Grewal 2002)


Project initiated: Shapiro-Ilan, Gaugler, Adams, Hopper

- Both the nematode & bacteria partner contribute to trait deterioration during *in vivo* culture (Bilgrami, et al. 2006 Nematology)
- The cause of deterioration is (at least in part) genetically based (evidence indicates inbreeding depression) (Chaston et al. submitted)

Overcoming Trait Deterioration:

(Bai, Shapiro-Ilan, Gaugler & Hopper, 2005 Biol. Control)

- Inbred lines deter trait loss in Hb
- <u>Problem can be</u> <u>deterred by selecting</u> the "best" inbred lines
- Future = explore nongenetic factors, and molecular basis

Quality Issues for In Vivo Production

What can go wrong

- Poor nematodes (weak strain, deterioration)
- Poor inoculation
- Poor storage stability
- Human error

Overcoming the Problem

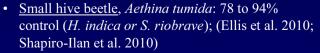
- Strain improvement, inbred lines
- Optimize inoculation rate, host density, environment (clean)
- Optimize package density, medium & conditions
- Improve training

Application Method for EPNs Standard = Aqueous

Some Current Commercial Targets:

- Citrus root weevils, e.g., *Diaprepes abbreviatus*
- Black vine weevil Otiorhynchus sulcatus
- Fungus gnats (Sciaridae)
- Mole crickets, *Scapteriscus* spp.
- White grubs (Scarabaeidae)
- Also, billbugs, cutworms, cranberry girdler, fleas, thrips, etc.

Pest, Common name	<u>Pest, Scientific name</u>	Nemas
Artichoke plume moth	Platyptilia carduidactyla	Sc
Banana moth	Opogona sachari	Hb, Sc
Banana root borer	Cosmopolites sordidus	Sc, Sf, Sg
Black cutworm	Agrotis ipsilon	Sc
Black vine weevil	Otiorhynchus sulcatus	Hb, Hm
Borers	Synanthedon spp.	Hb,Sc, Sf
Codling moth	Cydia pomonella	Sc
Corn earworm	Helicoverpa zea	Sr
Diamondback moth	Plutella xylostella	Sc
Fungus gnats	Diptera: Sciaridae	Sf, Hb
Japanese beetle	Popillia japonica	Hb, Sg
Leafminers	<i>Liriomyza</i> spp.	Sc
Mole crickets	Scapteriscus spp.	Sc, Sr, Ss
Plum curculio	Conotrachelus nenuphar	Sr


Shapiro-Ilan & Grewal (2008). Hb=*H. bacteriophora*, Hm=*H. marelatus*, Sc=*S. carpocapsae*, Sf=*S. feltiae*, Sg=*S. glaseri*, Sr=*S. riobrave*, Ss=*S. scapterisci*.

Expanding/Improving Targets

• <u>Peachtree borer</u>, *Synanthedon exitiosa*: 88-100% control (Sc), curatively or preventatively, low costs (Shapiro-Ilan et al. 2009)

- <u>Plum curculio</u>, *Conotrachelus nenuphar*: > 95% control vs. larvae (Sr), need to integrate into management program (Shapiro-Ilan et al. 2008)
- <u>Pecan weevil</u>, *Curculio caryae*: Multiple preemergence applications results in <1% survival

Advances in EPN Application

• Cadaver approach

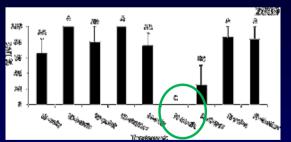
• Aboveground application

Improved Application Methods Cadaver Application

- <u>Approach</u> = application of nematodes in infected hosts; pest suppression is achieved by newly released IJs; <u>Reduces Labor</u>!
- <u>Superior efficacy</u> e.g., in lab and greenhouse (Shapiro-Ilan et al. 2003)
- <u>Facilitating application</u>: Apply in hardbodied insects or protective formulation, e.g., clay coating (Shapiro-Ilan et al. 2001)

- or <u>new automated tape coating</u> (Morales-Ramos, Tedders, Dean, Shapiro-Ilan, Rojas);

Efficacy demonstrated to small hive beetle & Diaprepes weevil (Shapiro-Ilan et al. 2010)



Improving Application Efficacy Aboveground:

Improved Formulations

- Adjuvants, e.g., antidesiccants;
 -surfactant-polymer combo (Schroer et al.),
 success versus *Plutella xylostella*
- Post-application "covers"
- e.g., foam (Lacey et al.), sprayable gel.....

Sprayable "Fire" Gel (Shapiro-Ilan et al. 2010. Biol. Control)

- Gel + nematodes (Barricade®) caused significant suppression of borer pests
- May have broad applications for use in other pests/crops

Summary/Conclusions

- *In vivo* EPN culture is a viable industry in North America; efficiency is hindered by labor and insect costs
- Production efficiency can enhanced via improved insect media (for nematode fitness), automation, superior nematodes & strain stability
- Improvements in application lead to superior efficacy, e.g., cadaver, spray parameters, improving soil environment, advanced formulations for aboveground use
- <u>Future Research</u>: Expanded automation, advances in strain improvement & formulation technology, basic studies (e.g., deterioration), quality control (tools)

Acknowledgments

- <u>Technical assistance</u>: R. Auman, H. Bartels, T. Brearley, L. Colley, W. Evans, K. Halat
- <u>Postdocs/Visiting Scientists</u>: C. Bai, A. Bilgrami, Y. Wang
- <u>Research Collaborators</u>: B. Adams,
 R. Gaugler, K. Hopper, T. Cottrell, D. Horton,
 R. Mizell, M. McGuire, R. Behle, W. Gardner
- <u>Funding</u>: USDA-CSREES-NRI, USDA-NIFA-SBIR, USDA-PMAP, USDA-RAMP
- ANPB & AMRQC Organizers!

Mention of a proprietary product name does not imply USDA's approval of the product to the exclusion of others that may be suitable