• *Macrolophus* spp. (Heteroptera : Miridae)
 ▫ Small predatory bugs (+/- 3mm)
• Palearctic species
 ▫ Widely used in European greenhouses
 ▫ Biological control of aphids, whiteflies, thrips, spider mites on eggplants, tomatoes,…

• Two commercially distributed species:
 ▫ *M. pygmaeus* and *M. caliginosus*
• Morphologically very similar

M. pygmaeus often sold as "*M. caliginosus*" by biocontrol companies (Perdikis *et al.*, 2003, Martinez-Cascales *et al.*, 2006, Machtelinckx *et al.*, 2009)

• Facultative phytophagous predators
 ▫ In times of prey scarcity: feeding on plants
• Piercing-sucking mouthparts

• Our objective:
 ▫ Endosymbiotic community in *M. caliginosus* and *M. pygmaeus*
 ▫ Symbiosis :'living together of two dissimilar organisms' (De Bary, 1879)
 ▫ Most important and best known arthropod endosymbiont: *Wolbachia*
Wolbachia

- Obligate intracellular alpha-proteobacterium with an exceptionally wide host range within the arthropods
- Approximately 66% of all insects infected (Hilgenboecker et al., 2008)
- Possible influence on the fecundity (Vavre et al., 1999)
- In rare cases: obligate for its arthropod host (Dedeine et al., 2001)

Parthenogenesis

Infected females produce female offspring of unfertilized eggs in haplo-diploids (thelytoky via gamete duplication) (Stouthamer et al., 1990)

Wolbachia

Manipulates the reproduction of its arthropod host
- **Feminization**
 - Infected genetic males convert into females (prevention of the androgenic gland formation) (Rousset et al., 1992)

Male killing

- *Wolbachia* bacteria kill male progeny during embryogenesis while female progeny survives (Stevens et al., 2002)
Cytoplasmic incompatibility

- Probably most common effect of *Wolbachia* (Stouthamer et al., 1999)
- Cross between an infected male and an uninfected female or a female infected with another *Wolbachia*-strain results in embryonic mortality

Effect of *Wolbachia* in *M. pygmaeus*?

- *Macrolophus pygmaeus* is infected with *Wolbachia* (Machtelinckx et al., 2009)
- An infected strain was cured by adding tetracycline to an artificial diet based on egg yolk

Crossing experiments

- Infected males with infected females [I-♂ x I-♀]
- Uninfected males with uninfected females [U-♂ x U-♀]
- Infected males with uninfected females [I-♂ x U-♀]
- Uninfected males with infected females [U-♂ x I-♀]

Wolbachia causes cytoplasmic incompatibility in *M. pygmaeus* (only 8 out of 702 eggs hatched)
Other endosymbionts?

- Besides *Wolbachia*: increasing number of endosymbionts found in arthropods (Duron et al., 2008)

 Rickettsia (MK, P)

 Arsenophonus ("Son-killer")

Cardinium (CI, P, F)

Spiroplasma (MK)

Conclusion

- *Wolbachia* induces strong CI in *M. pygmaeus*
 - May have vital implications for the commercial production of *Macrolophus* sp. and their use in biological control
 - Suppression of the population growth by interaction of populations with a different infection status

Future research

- Reproductive effect of endosymbionts in *M. caliginosus*
- Infection status of wild *Macrolophus* spp.
 - Same endosymbiotic community?
 - Bidirectional incompatibility?

Thank you

- PhD. grant to T. Machtelinckx from ‘Institute for the Promotion of Innovation by Science and Technology in Flanders’ (IWT)
- Organizers of the 12th Workshop of the IOBC AMRQC Working Group and this session ‘The Role of Microbiota in Insect Mass Rearing and Quality Control’
- Thank you for your attention!