

The work product of this Consultant's meeting was published as an invited review article in a special issue of the Journal of Applied Entomology (2010) which highlighted the progress of an FAO/IAEA Coordinated Research Project on Improvement of Codling Moth SIT to Facilitate Expansion of Field Application

G. S. Simmons, D. M. Suckling, J. E. Carpenter, M. F. Addison, V. A. Dyck, and M. J. B. Vreysen. 2009. Improved quality management to enhance the efficacy of the sterile insect technique for lepidopteran pests. Journal of Applied Entomology 134 (3): 261-273.

IAEA Consultants Group Meeting on

"Increasing the Efficiency of Lepidoptera SIT by Enhanced Quality Control"

> December 3-7, 2007 Vienna, Austria

Consultants: Greg Simmons Max Suckling Matthew Addison Jim Carpenter Joint FAO/IAEA, IPC sub-programme Staff Including: Marc Vreysen V.A. Dyck

IAEA Initiated a new Co-ordinated Research Project (CRP) on "Increasing the Efficiency of Lepidoptera SIT by Enhanced Quality Control" in 2009

First Research Co-ordination Meeting within the FAO/IAEA Coordinated Research Programme was held in Christchurch, New Zealand from 27 April to 1 May 2009.

First Research Co-ordination Meeting (RCM) within the FAO/IAEA Coordinated Research Programme was held in Christchurch, New Zealand from 27 April to 1 May 2009.

For this CRP 3 key areas were identified where research could be conducted to improve the quality management of Lepidoptera for use in SIT programmes:

- a) identifying and characterizing factors and variables that affect quality and field performance of released moths;
- b) developing and improving tools and methods to assess, predict and enhance the field performance of released moths based on insect quality;
- c) developing new and improved methods for enhancing rearing systems, and facilitating the selection for performance and fitness traits that improve colony establishment, refurbishment and production, and the field performance of released moths.

As part of this CRP, we have been examining factors and variables that affect quality and field performance of released moths, and we are working to develop methods to assess, predict and enhance the field performance of released moths.

For this presentation, the first example is work on the codling moth, a pest of pome fruit.

First Research Co-ordination Meeting Christchurch, New Zealand

This RCM was attended by <u>15 CRP</u> participants coming from <u>13 countries</u> (Argentina, Austria, Australia, China, India, Israel, Malaysia, Mexico, New Zealand, Syria, Tunisia, South Africa, and USA). The meeting was likewise attended by several observers from New Zealand Institute for Plant and Food Research

The Second RCM will be held in Stellenbosch, South Africa, November 2010

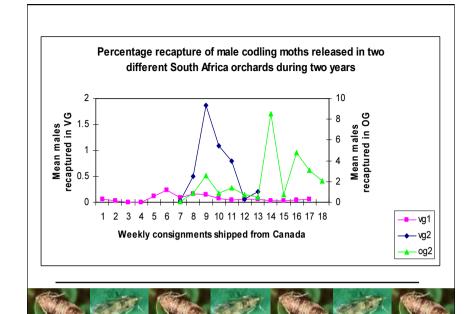
Two-year study: moths reared and irradiated in British Columbia were commercially air-freighted in cold boxes to Stellenbosch, South Africa:

Year 1 - 23 consignments from which moths were released in commercial orchard

Year 2 – 7 consignments from which moths were released in commercial orchard and 12 consignments from which moths were released in a research farm

Laboratory bioassays were conducted for each consignment

A dataset was constructed which included variables associated with factors linked to the insectary, the air-freighting, and the field; and variables associated with laboratory and field bioassays.

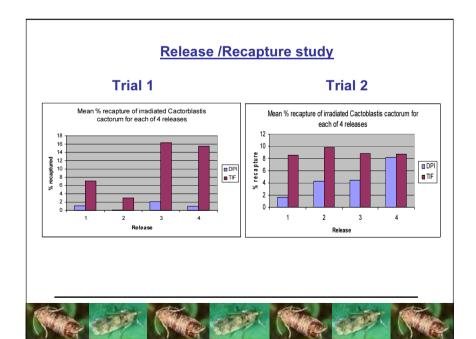

Data analysis included Stepwise Regression Analysis (Max R² method) to construct the best 1- 6 variable model to predict moth quality and field performance.

Variables included in dataset:

Male and female weight and longevity % mated females upon arrival, after 24h and 48h % increase in mating after 24 and 48h Flightability (flight cylinders) Transit time, maximum & minimum temperature Transit time temperature < 0°C Consignment arrival date and time # Petri dishes & moths/dish (males & females) Year Release farm site 6PM temperature 8PM temperature 10PM temperature # males released % recapture

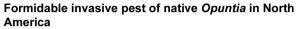
Year 1 - Farm Site Vg					
Dependent Variable R-Square = 0.7101 Pr > F = 0.0093	•				
Model = Variable F	Parameter Estimate	F Value	Pr > F		
Intercept	-1.05384	2.84	0.1230		
∄Longevity	0.02140	2 70	0.1317		
~ ~ /	0.02014	4.02	0.0729		
Transit Time	0.00502	2.99	0.1146		
Max Transit Temp	0.00583				

Year 2 - Farm Site Vg						
Dependent Variable: %R R-Square = 0. 9805 Pr > F = 0.0195 Model =	ecapture					
	eter Estimate	F Value	Pr > F			
Intercept	3.52454	139.69	0.0071			
Time Temperature<0	0.09803	9.11	0.0945			
Arrival Date	-0.57192	79.08	0.0124			



Year 2 - Farm Site Og

Dependent Variable: % R-Square = 0.9417 Pr > F = 0.0004	Recapture		
Model =			
Variable Para	meter Estimate	<u>F Value</u>	Pr > F
Intercept	-11.95940	27.16	0.0020
%Mated@24h	0.09422	29.25	0.0017
Time Temperature<0	0.36296	41.02	0.0007
Max_Temp_Day2	0.21414	15.29	0.0079



Cactoblastis cactorum:

••

Successful biological control agent for weedy *Opuntia* in many parts of the world

A combination of control tactics, including the SIT, has been used effectively to eradicate *Cactoblastis cactorum* incursions in Mexico and to significantly reduce populations along the U.S. Gulf coast.

Cactoblastis cactorum

Dependent Variable: % Recapture					
Trial=1					
R-Square = 0.9809 Pr > F= 0.0470					
Variable Parame	ter Estimate	F Value	Pr > F		
Intercept	-43.93437	14.60	0.0622		
Pre-Mated (%)	-0.83455	39.02	0.0247		
%Mated	-0.96079	33.18	0.0288		
ୁLongevity	8.78878	11.35	0.0780		
% flight@24h	0.13089	35.66	0.0269		
Trial=2	<u>2</u>				
R-Square = 0.9985 Pr > F= 0.0001					
Variable Parame	ter Estimate	F Value	Pr > F		
Intercept	72.24186	880.92	0.0001		
ୁLongevity	-6.43063	990.87	0.0001		
%Flight@48h	-0.08634	210.00	0.0007		
් Weight	453.54122	425.39	0.0002		
ୁWeight	-413.84045	551.27	0.0002		

Summary

• The new IAEA CRP will facilitate the advancement of quality control procedures for Lepidoptera

• Detailed datasets and Stepwise Regression Analysis can be used to develop predictive models and to provide a feedback mechanism for monitoring and improving sterile moth performance in the field

• Our initial research approach to monitor and assess variables that are linked to moth quality has already led to improved sterile moth performance in an operational program

