Fabrication and Quality Control Of Fuel For Prototype Fast Breeder Reactor (PFBR)

J.P. Panakkal and H.S. Kamath
Advanced Fuel Fabrication Facility,
Bhabha Atomic Research Centre,
Tarapur, INDIA

Presented By

Dr. JOSE P. PANAKKAL

FR 09 Kyoto, Japan
OUTLINE OF THE PAPER

- INTRODUCTION
- MOX FUELS FOR FAST REACTORS
- FABRICATION STEPS FOR PFBR
- QUALITY CONTROL
- CONCLUSION
- ACKNOWLEDGEMENT
Pu Bearing MOX Fuel Fabrication for Thermal & Fast Reactors

Scope of work

First stage
- (U~4%Pu) MOX for BWRs (TAPS)
- (U~0.4%Pu) MOX for PHWRs (KAPS)

Second stage
- (U-44%Pu) MOX for FBTR
- (U-28%Pu) MOX for PFBR

Third stage
- (Th-3%Pu) MOX for AHWR

12/18/2009

FR 09 Kyoto, Japan
MOX FUELS FOR FAST FACTORS

MIXED CARBIDE FUEL PINS FOR FBTR

♣ (0.7 Pu – 0.3 U)C

MOX FUEL PINS FOR FBTR

♣ (0.44 Pu – 0.56 U)O$_2$

MOX FUEL PINS FOR PFBR

♣ (21% PuO$_2$ & 28% PuO$_2$)

FR 09 Kyoto, Japan
MOX Fuel for PFBR Technology Developed

a) Fabrication of annular pellets using rotary press
b) Sinter to size
c) Dry Centreless grinding of oversize pellets
d) Pellet inspection using digital imaging
e) Welding technology for D-9
FABRICATION OF MOX FUEL

12/18/2009
FR 09 Kyoto, Japan
COMPACPTION PRESS AND COMPACTED PELLETS

12/18/2009

FR 09 Kyoto, Japan
AUTOMATION IN PELLET FABRICATION SYSTEM

12/18/2009 FR 09 Kyoto, Japan
PFBR PELLETS

FR 09 Kyoto, Japan
PFBR FUEL PIN

Spring Top Blanket Fuel Middle plug Bottom End Plug

Top End Plug Spring Support Bottom Blanket
Fit-up Of PFBR Tube With Plug (Before Welding)

Plug 6.6 mm

20 mm

Clad

40 mm 5.71 mm

0.45 mm

5 mm

12/18/2009

FR 09 Kyoto, Japan
CLOSE VIEW OF LASER WELDING SETUP

12/18/2009
FR 09 Kyoto, Japan
PFBR END PLUG WELDS

LASER WELD

TIG WELD

FR 09 Kyoto, Japan
PFBR FUEL PINS
12/18/2009
FR 09 Kyoto, Japan
QUALITY CONTROL IN A TYPICAL FUEL FABRICATION PLANT

INITIAL INCOMING MATERIALS

: HARDWARE, FUEL FEED MATERIALS

DURING PRODUCTION

1. GREEN PELLETS : VISUAL, DENSITY, DIMENSIONS

2. SINTERED PELLETS : VISUAL, DENSITY AND OTHER CHARACTERISTICS

3. MONITORING VARIOUS PRODUCTION PARAMETERS AND COMPARE WITH MANUFACTURING ENGINEERING INDEX

4. FUEL RODS

5. FUEL BUNDLES

6. DOCUMENTATION
FLOWWORKSHEET OF PFBR MOX FUEL

FUEL FABRICATION STEPS
- PuO₂
- UO₂
- Attitor Milling
- Precompaction & Granulation
- Compaction
- Sintering
- Dry Centreless Grinding
- Vacuum Degassing
- Stack Making
- Pellet Loading
- Fuel Element Welding
- Decontamination
- Wire Wrapping
- Packing & Transport
- Decontamination

SCRAP RECYCLE STEPS
- Oxidized Scrap
- Microwave/Thermal Processing
- CRO
- Rejects
- Decladding
- Reject Elements

PROCESS / Q.C. STEPS
- Pu, Am, Isotopes, Impur.
- U, O/M, S.A, Impurities
- NWCC
- Granulometry
- Density, Inspection
- ρ, U/Pu, α-Autoradiography
- Pellet Inspection
- Stack Inspection, Visual
- Metallography
- Contamination check
- He leak test, X-Radiography, XGAR, γ-scanning, Metrology, Visual
- Final Inspection
Comparison of NWCC and Chemical Analysis Results of MOX Fuel for Fast Reactors

12/18/2009

FR 09 Kyoto, Japan
ALPHA AUTO RADIOGRAPHY

- DISTRIBUTION OF Pu
- PuO2 AGGLOMERATES

- ALPHA PARTICLES FALL ON CELLULOSE NITRATE FILM
- PROCESSED FILM REVEALS TRACKS
- UNIFORMITY AND SIZE
- COLOUR IMAGE
PHOTOMICROGRAPHICS OF PFBR PELLET

Longitudinal section Transverse section

ALPHA AUTORADIOGRAPH OF PFBR PELLET
Video Microscope For Micro structural Evaluation Of MOX Pellets

FR 09 Kyoto, Japan
PELLET SORTING SYSTEM

1- Laser Detector, 2- Laser Transmitter, 3- Solenoid, 4- Solenoid
5- Bowl Feeder, 6- Controller for Vibratory Bowl Feeder, 7- Main Control Unit

FR 09 Kyoto, Japan
VISUAL INSPECTION & PELLET SORTING SYSTEM

12/18/2009

FR 09 Kyoto, Japan
CHEMICAL CHARACTERISATION OF MOX FUELS

1. PuO$_2$ % ENRICHMENT
2. HEAVY METAL CONTENT
3. DISSOLUTION TEST
4. O/M RATIO
5. NON METALLIC IMPURITIES
6. TRACE METALLIC IMPURITIES
7. COVER GAS ANALYSIS
8. TOTAL GAS ANALYSIS
END PLUG WELD

- TIG WELD
- FREEDOM FROM
- MODIFICATIONS
- ADVANCED TECHNIQUES

X-RADIOGRAPHY
LACK OF PENETRATION
LACK OF FUSION
POROSITY – INCLUSION-OTHER
SHAPE CORRECTION BLOCK
DEFECT STANDARD
MICRODENSITOMETRY
IMAGE PROCESSING
REAL TIME MOTION RADIOGRAPHY
LINEAR ARRAY DETECTORS
ULTRASONICS

12/18/2009
FR 09 Kyoto, Japan
Radiography of End Cap Welds

12/18/2009

FR 09 Kyoto, Japan
Shape Correction Block For PFBR
End Cap Welds
REAL TIME MOTION RADIOGRAPHY

12/18/2009

FR 09 Kyoto, Japan

X-Ray Tube

Monitor

Pin carriage

Slit

Fluoroscopic arrangement
ULTRASONIC END CAP WELD INSPECTION

FR 09 Kyoto, Japan
Detection of a gross lack of penetration

FR 09 Kyoto, Japan
GAMMA AUTORADIOGRAPHY (GAR)

- PuO$_2$ AGGLOMERATE AND COMPOSITION BY NDE
- X RAY FILMS IN PVC CASSETTES KEPT IN CONTACT WITH WELDED RODS
- DARKENING OF THE PROCESSED FILM IS PROPORTIONAL TO PuO$_2$ ENRICHMENT
- DEFECTS:
 - PELLETS OF WRONG ENRICHMENT
 - PuO$_2$ AGGLOMERATES IN THE PERIPHERY
 - COMPOSITIONAL VARIATION
GAMMA AUTORADIOGRAPHY (GAR)

(Cont...)

- ANOTHER CHECK FOR PuO₂ ENRICHMENT
- ADDITIONAL QUALITY CONTROL STEP INTRODUCED
- MICRODENSITOMETRY
- COLOUR GAMMA AUTORADIOGRAPHY
- SIMPLE TEST
- X-GAR : (X-RADIOGRAPHY+GAMMA AUTORADIOGRAPHY)

RESULTANT IMAGE GIVES ADDITIONAL INFORMATION ABOUT INTERNAL COMPONENTS LIKE SPRING, SPRING SUPPORT etc.
X-RAY GAMMA AUTO-RADIOGRAPHY

X-ray source → [Diagram]

slit → TRAY

FR 09 Kyoto, Japan

12/18/2009
X-RAY GAMMA AUTO-RADIOGRAPHY

X-ray source → slit → X-RAYS

FUEL ELEMENT

12/18/2009
FR 09 Kyoto, Japan
X-RAY GAMMA AUTO-RADIOGRAPHY

X-ray source → slit → FUEL ELEMENT

X-RAYS → FUEL ELEMENT

FR09 Kyoto, Japan
X-RAY GAMMA AUTO-RADIOGRAPHY

X-ray source → slit → X-RAYS

FUEL ELEMENT

FR 09 Kyoto, Japan
X-RAY GAMMA AUTO-RADIOGRAPHY

X-ray source → slit

TRAY

12/18/2009 FR 09 Kyoto, Japan
X-RAY GAMMA AUTO-RADIOGRAPHY

X-ray source → TRAY → FUEL ELEMENT → slit

FR 09 Kyoto, Japan
X-RAY GAMMA AUTO-RADIOGRAPHY

X-ray source

slit

FUEL ELEMENT

X-RAY CASSETTE

FR 09 Kyoto, Japan
X-RAY GAMMA AUTO-RADIOGRAPHY

X-ray source → slit → X-RAYS

FUEL ELEMENT

FR 09 Kyoto, Japan
X-RAY GAMMA AUTO-RADIOGRAPHY

X-ray source → slit → X-RAYS

FUEL ELEMENT

12/18/2009 FR 09 Kyoto, Japan
X-RAY GAMMA AUTO-RADIOGRAPHY

X-ray source → slit → X-RAYS

FUEL ELEMENT

FR 09 Kyoto, Japan
X-RAY GAMMA AUTO-RADIOGRAPHY

X-ray source

slit

X-RAYS

FUEL ELEMENT

FR 09 Kyoto, Japan
X-RAY GAMMA AUTO-RADIOGRAPHY

X-ray source

slit

X-RAYS

FUEL ELEMENT

FR 09 Kyoto, Japan
X-GAR OF PFBR FUEL PIN

Plenum Spring

DDUO₂ MOX

DDUO₂ Plenum Space

Spring support

Middle Plug

FR 09 Kyoto, Japan
Gamma Scanning of Fuel Elements
Gamma scan of PFBR MOX fuel pins with varying composition
SURFACE EXAMINATION AND METROLOGY

✓ COLOUR, SPARKING, DENTS,
✓ SCRATCHES
✓ PHYSICAL DAMAGE
✓ MANUAL : CCD-TV
✓ METROLOGY : MECHANICAL LVDT NONCONTACT (LASER)

12/18/2009 FR 09 Kyoto, Japan
MORE NDE AND PROCESS CONTROL CHECKS INCREASE RELIABILITY AND CONFIDENCE AND HENCE REDUCE DESTRUCTIVE TESTS

• e.g. PuO2 ENRICHMENT MONITORED AT DIFFERENT STAGES BY NWCC, PGS, GAR.

REDUCTION OF DESTRUCTIVE CHEMICAL ANALYSIS

CHEMICAL ANALYSIS NEEDED FOR SAMPLES NEAR THE LIMITS

COMBINATION OF PROCESS AND QUALITY CONTROL CHECKS IMPROVE THE QUALITY OF THE FUEL

INTELLIGENT PROCESSING TECHNIQUES-FOR TQM
CONCLUSION

- PROCESS PARAMETERS FOR FABRICATION OF MOX FUEL FOR PFBR FINALISED.
- ADVANCED TECHNIQUES FOR FABRICATION AND QUALITY CONTROL DEVELOPED.
- AUTOMATION TO REDUCE MANREM
THE AUTHORS WISH TO THANK OUR COLLEAGUES OF ADVANCED FUEL FABRICATION FACILITY, BARC FOR THEIR CO-OPERATION AND HELP.

THE FINANCIAL SUPPORT RECEIVED FROM INTERNATIONAL ATOMIC ENERGY AGENCY IS GRATEFULLY ACKNOWLEDGED.