Role of Safeguards in Proliferation Resistance for the Future Nuclear Fuel Cycle Systems

Presented at FR09

Yusuke Kunoa, b, Masao Senzakia, Naoko Inouea, b and Michio Seyaa

aJapan Atomic Energy Agency

bUniversity of Tokyo
Japan’s Nuclear Energy Policy

Basic Goals of the Framework for Nuclear Energy Policy

(a) Continuing to meet **at least 30 to 40% of electricity** supply even after 2030 by nuclear power generation,
(b) Further **promoting the nuclear fuel cycle (NFC)**, and
(c) Aiming at commercializing practical **FBR cycle** in 2050.

Nuclear non-proliferation

- Accordingly larger amount of plutonium than that in the present time should be recycled.
- **It is essential to incorporate** Proliferation Resistance (PR) technologies and Safeguards into its early design stages of NFC, in order to demonstrate robust proliferation-resistant future NFC in an efficient, effective and economically viable manner.
- **Present Safeguards system in Japan**, namely, **International Safeguards under CSA and AP is very effective measures**, among many PR measures. However, **more effective and efficient Safeguards should be considered for future NFC**.
Example of Barriers for Proliferation Resistance

Weaponization Steps

- Intention/Planning
- Material Acquisition
- Conversion to Metallic Pu
- Fabrication of weapon

Extrinsic Barriers
- Safeguards (CSA)
 Detection capability of diversion & misuse
- Safeguards (AP)
 Detection capability of clandestine activities / facilities

Intrinsic Barriers
- Restraint of Pu Separation
 (Pu/U Co-extraction, MA-Recycle)
- Modification Pu Isotopic Composition
 a) Heat generation from Pu-238
 MA addition to Blankets, Recovered-U Blankets
 b) Low Pu-fissile
 Blanket-less reactor core, Reactor-Grade Pu addition to Blanket
- Low DF (FP) Fuels
 (Radiological barrier)
Key Proliferation Resistance Measures to be considered during designing NFC

INPRO
- States' Commitments (UR 1)
- Attractiveness of NM and Technology (UR 2)
- Difficulty and Detectability of Diversion (UR 3)
- Multiple Barriers (UR 4)
- Optimization of design (UR 5)

GEN IV
- Technical Difficulty (TD)
- Proliferation Costs (PC)
- Detection Probability (PT)
- Material Type (MT)
- Detection Probability (DP)
- Detection Resource (DR)

Key PR Measures (Barriers)
1. Detection of Diversion and Misuse
2. Difficulty to Modify Process for Separation of Pu
3. Material Type Barriers

Reasonably Economical Designing

- Detect Diversion/Misuse in Timely Manner (SG by Design)
- Delay Diversion/Production of Nuclear Weapon
- Deterrence
Proliferation Resistance – Detection: Based on Institutional Systems

High detection probability by Safeguards (SG) and other techniques:

– Design information
– Material accountability
– Containment/Surveillance (C/S)
– Detect-ability of material diversion and misuse
– Operational transparency
– Etc.
IS Approach at Pu Fuel Production Facility

【Facility (PFPF)】

- Frequent declaration by AAS
- Near Real-Time material Accountancy system
- Remote Monitoring of nuclear material movement
- Limited Frequent Random Inspection

※※ ※※ ※※ ※※

【IAEA】

- Frequent NRTA evaluation
- Remote Monitoring System
- Limited Frequent Random Inspection

※※ ※※ ※※ ※※

-The conclusion of the safeguards

※※ ※※ ※※ ※※

: measures of PFPF IS approach
SG for Large Scale Reprocessing (SG Approach in RRP)

- DIQ/DIV
- Dual C/S (Surveillance Cameras, Radiation Detectors)
- Process Monitoring (Hull Monitoring, Solution Monitoring, PIMS etc)
- NRTA
- Unattended Mode Inspection, Centralized Collection of Inspection Data
- Various NDAs
- Advanced Accountancy System
- On-Site-Laboratory (Rapid Verification Measurement)

Diagram:

- ISVS: Integrated Spent fuel Verification System
- IHVS: Integrated Head-end Verification System
- ASAS: Automatic Sampling Authentication System
- WCAS: Waste Cante Assay System
- VCAAS: Vitrified Canister Assay System
- TCVS: Temporary Canister Verification System
- MSGS: MOX Storage C/S System
- USCS: Uranium Storage C/S System
- SMMS: Solution Monitoring and Measurement System
- RHMS: Rokkasho Hulls Drum Measurement System
- IJPD: Inspector Jag Passage Detector
- WDAS: Waste Drum Assay System
- PIMS: Plutonium Inventory Measurement System
- IPCAS: Improved Plutonium Canister Assay System
- UBVS: Uranium Bottle Verification System
Example
Proliferation Resistance on Future Nuclear Fuel Cycle

Under Integrated Safeguards

Clandestine nuclear Weapon program

- Detect program
 - No
 - Yes

- Detect Activity
 - No
 - Yes

Hidden Nuclear Facility

Cost

Technical difficulty

Material type

Acquisition of nuclear weapon

Very little chance to possess a clandestine facility under Integrated Safeguards!

Very little chance to divert NM

Very little chance to misuse the process

Detected by DIV

Detected by PIV + IIV

Detected by Frequent NRTA, Accountancy & C/S

Detected by SNRI

Detected by process surveillance/monitor

Technically difficult

Extrinsic based on CSA

Extrinsic based on AP

Intrinsic

E.g. Civil nuclear reprocessing
What are the real challenges in diversion risk for future Japanese NFC?

- Present Japanese NFC is under Integrated Safeguards, where either clandestine facilities or diversion of nuclear materials / misuse of NFC should be found at very high probability.
- This is unattractive enough to deter from taking nuclear weapon option, although Japan politically decides not to take it.
- Challenge will be to design NM accountancy future NFC (e.g. reprocessing, MOX fuel fabrication facility) where significantly/much higher amount of Pu than that in present time should be processed.
Case study how to realize nuclear material accountancy

Input Accountancy

Case A, B, C
- 60 kg Pu/batch

Process
- Extractors
- Vessels
- Pu evaporator

Reprocessing Throughput:
- 12,000 kg Pu/year

Output Accountancy

Case A
- 200 kg Pu/batch

Case B, C
- 15 kg Pu/batch

<table>
<thead>
<tr>
<th>Case</th>
<th>Flow</th>
<th>Total Inventory (Process+Accountancy)</th>
<th>Errors (Flow & Inventory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case A</td>
<td>60 kg Pu x 60 batches</td>
<td>200 kg Pu x 60 batches</td>
<td>400 kg Pu</td>
</tr>
<tr>
<td>Case B</td>
<td>15 kg Pu x 800 batches</td>
<td>15 kg Pu x 800 batches</td>
<td>90 kg Pu</td>
</tr>
<tr>
<td>Case C</td>
<td>90 kg Pu</td>
<td>90 kg Pu</td>
<td>170 kg Pu</td>
</tr>
</tbody>
</table>

Sampling & Measurement:
- All: ITV 2000
- Volume: 0% (total Pu is directly obtained without volumer measurement, i.e. by IDMS-tracer techniques)
Assumption for calculation

To Estimate Inventory σ_{MUF}: process-control measurement (*Case A & B*)

- Error for volume measurement: 1%
- Error for sampling: 0.5%
- Error for conc. Measurement: 10%

**ITV 2000 to Estimate Flow* σ_{MUF} (*Case A & B*), both flow and inventory* σ_{MUF} (*Case C*)

<table>
<thead>
<tr>
<th>ITV 2000</th>
<th>Input Pu</th>
<th>Output Pu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Random, Relative %</td>
<td>Systematic Relative %</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Sampling</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Pu-conc. (IDMS)</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Control of NM with $\sigma'_{MUF} < 1SQ$-Pu may be realized by monthly IIV.
To have Safeguard-ability for future NFC

Example,

① Essentials of Nuclear Material Accountancy / Safeguards
- Small process inventory
- More accurate accountancy measurement for input/output
- More accurate measurement even for inventory for IIV (≒ PIV(PIT))
- Frequent IIV for timeliness requirement
- Short notice randomized inspection
⇒ needs to design accountancy-friendly process and operational mode

② Improvement of Detectability
- NRTA→RTA
- Real time process monitoring with remote monitoring - C/S, NDA, sensors for detection of misuse of process: solution volume + concentration, possibly with isotopics
- More sophisticated monitors/sensors for Pu/U/(H⁺)

Key: “Safeguards by Design”
When Intrinsic measures work if a complete package of Safeguards is implemented?

Simply put, “in the case of break-through of institutional system (abrogation)”

What probability should be considered for such an abrogation for State that is in Integrated Safeguards?

How long is sufficient for the “lengthy delay”? Worthy to invest such intrinsic measures?
Intrinsic Measures for Future NFC?

- Strong intrinsic measures, such as technical difficulty or material type barrier should be studied because those would be effective for the cases of State’s break-out (abrogation) from institutional framework or terrorist attack.
- However, if the study on the strong intrinsic measures results in not being economically viable, then there may be no other choice than finding a certain rational level of intrinsic measures, that are to be reasonably acceptable for international communities.
- Here, it is essential that these intrinsic measures should always be combined with the above-mentioned advanced ideas to provide sufficient safeguardability/detectability to meet institutional requirements and a strong PP system.
- This kind of study may be a future Japanese challenge.
Safeguards and Intrinsic PR Technologies

- **Very High**
 - CSA?
 - Yes → Level I*
 - No → CSA+AP?
 - Yes → IS?
 - Yes
 - No → High
 - CSA+AP?
 - Yes → IS?
 - Yes
 - No → Level II*
 - Level I* Classification of Level I-IV was proposed by J.Carlson and R.Leslie: “Safeguards Intensity as a Function of Safeguards Status”, the 46th INMM Annual Meeting, Phoenix, Texas, July 2005

- **High**
 - Very Low
 - Level III*
 - Level IV *(IS extended period)

- **Low**
 - Level II*
 - Level I* *(IS extended period)

- **Very Low**

Not acceptable, even with any PR intrinsic

Very high intrinsic PR; but not easily acceptable

High intrinsic PR acceptable

Certain level of intrinsic PR acceptable

Intrinsic PR technology necessary for NFC required by International Society

Probability of diversion / misuse, happening in the case of NFC Option

Safeguards
Figure of Merit on Various Reactors, Arranged from the Previous Study*

| Reactor Type (*Materials in SF) | Figure of Merit (FOM) \(: 1 - \log_{10}(x) \\
\quad x = m \left[\frac{1}{800} + \frac{h}{4500} + \frac{n}{d/500} \right] + \left[\frac{d}{500} \right]^{1/\log_{10}{2}} \) \\
\quad FOM: B>2, C:1-2, D: 0-1 \\
\quad B,C,D: DOE Graded Safeguards |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WG-Pu</td>
<td>B</td>
</tr>
<tr>
<td>LWR**</td>
<td>C</td>
</tr>
<tr>
<td>LWR/MOX**</td>
<td>C</td>
</tr>
<tr>
<td>LMFBR Core**</td>
<td>C</td>
</tr>
<tr>
<td>LMFBR Blanket**</td>
<td>B</td>
</tr>
<tr>
<td>LWR (High BU)**</td>
<td>C</td>
</tr>
<tr>
<td>Pu (10% 238Pu)</td>
<td>C</td>
</tr>
<tr>
<td>Pu (80% 238Pu)</td>
<td>D</td>
</tr>
</tbody>
</table>

** Conditions on fresh fuel and BU etc for the calculation are referred to M. Benedict, T. Pigford, H. Levi, Nuclear Chemical Engineering, 2nd. Edition.
Level of Intrinsic PR Measures

• The degrading criteria can be based on:
 1) quality of plutonium similar to those produced in current operating reactors.
 2) a quantitative Figure-of-Merit (FOM) related to the intrinsic properties of nuclear materials.

• Materials of LWR spent fuels (SF), MOX (LWR) SF, and Pu materials containing 10% of 238Pu, as regarded very high PR, are uniformly in accordance with grade C of US DOE Graded Safeguards (US DOE M 474.1-1B).

• In this context, material-type PR measure for blanket fuel whose FOM value is staying in grade C could correspond to the “certain level” for the case attaining SG Level III, IV

• Grade D may fit to the “very high” and high level” of intrinsic PR.
Conclusion

• A large amount of plutonium should be handled in the future fast reactor nuclear fuel cycle (FR-NFC).
• Robust measures for nuclear PR may have to be taken to prevent nuclear proliferation.
• To optimize the balance of extrinsic and intrinsic barriers is essential for NFC design.
• International Safeguards including Comprehensive Safeguards Agreement and Additional Protocol is the most effective institutional barrier among other institutional measures in non-proliferation regime.
• Particularly, in the countries where Integrated Safeguards (IS) is implemented, it seems unlikely that abrogation of institutional systems or diversion of nuclear materials in such countries occurs.
• A new concept of differentiation in the intrinsic measures depending upon the level of Safeguards could be applied from the viewpoint of plant design rationalization.
Thank you for your attention