Recent progresses in advanced Actinide recycling processes

Dominique Warin, Christophe Poinssot and Christine Rostaing

CEA / Nuclear Energy Division
Radiochemistry and Processes Department

Marcoule, France
dominique.warin@cea.fr
Advanced processes for Actinide recycling:
French recent experiments and results

December 30, 1991 and June 28, 2006

OUTLINE

2 – (2006-2012) Recycling R and D program, in the frame of the 2006 Act

3 – Recent and on going R and D results for MAs recycling

4 – Industrial potentiality

5 – Conclusion
Radiotoxicity of waste, to be disposed

Spent fuel

Uranium (ore)

Time after unloading (years)

250 000 years
Radiotoxicity of waste, to be disposed

- **Uranium (ore)**
- **Spent fuel**
- **Glasses FP+MA**

- 10,000 years
- 250,000 years

Time after unloading (years)

Radiotoxicity relative

- Samples: Glasses FP+MA
- Time: 0, 1, 10, 100, 1000, 10000, 100000, 1000000
Radiotoxicity of waste, to be disposed

Time after unloading (years)

- Glasses without MAs (only FPs) 300 years
- Glasses FPs+MAs 10,000 years
- Spent fuel 250,000 years
- Uranium (ore) 250,000 years

CEA / Nuclear Energy Direction / Marcoule
Radiochemistry and Processes Department
FR 09, Kyoto, December 8, 2009
Radiotoxicity of waste, to be disposed

- Glasses without MA (FPs only)
- Glasses Pu multirecycling
- Spent fuel
- Uranium (ore)

Time after unloading (years)

- Radiotoxicity relative
- Spent fuel
LLRN Recycling for waste management

1st contributor: Pu
2nd contributor: Minor Actinides Np, Am, Cm
3rd contributor: Long-Lived Fission Products (LLFP)

Potential radiotoxicity

Processing and Recycling should minimize both the needed repository space and environmental impact

FR 09, Kyoto, December 8, 2009
Needed waste repository space, versus strategy

Due to interim storage time
Due to Am partitioning
Due to Cm partitioning

Interim storage time

<table>
<thead>
<tr>
<th>Interim Storage Time</th>
<th>Reduction of Necessary Repository Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 years</td>
<td>1</td>
</tr>
<tr>
<td>90 years</td>
<td>10</td>
</tr>
<tr>
<td>120 years</td>
<td>10</td>
</tr>
</tbody>
</table>
Actinide recycling: what fuel cycle option?

- **U and Pu recycled, **
 - **PUREX**

- **U and Pu recycled together, **
 - **COEX**

- **MA heterogeneous recycling**

- **MA homogenous recycling**
 - **MA: Np, Am, Cm**

- **FP&MA**

- **FP**

- **R → T**
The enhanced Partitioning 2005 results

- **A true challenge**: a sophisticated partitioning chemistry under highly radioactive conditions; fundamental and applied research:
 - exploration: new extracting molecules and systems
 - fundamentals: in-depth study of mechanisms at work

- **Applied research**:
 - process design
 - lab experiments on actual spent fuel material
 - “demonstration” experiments: integration, representativeness, long-lasting performance, secondary waste

- **Neptunium**: recovery ratio up to 99%, with modified La Hague PUREX
- **Americium and Curium**: recovery ratio up to 99.9%, with new DIAMEX-SANEX process
- **Technetium**: recovery ratio from 45 to 90%
- **Iodine**:
 - recovery ratio > 97% with PUREX
 - additional recovery up to ~ 99% possible
- **Cesium**:
 - recovery ratio > 99.8%, with the use of the calixarene extractant

FR 09, Kyoto, December 8, 2009
DIAMEX demonstrative hot run, November 2005

DIAMEX Production Am, Cm, Ln

0.65 M DMDOHEMA/TPH

4 m high Pulsed columns

PUREX raffinate 15 kg genuine fuel

extraction An+ Ln (CP)

extraction An+ Ln (CP)

Back-extraction An-Ln (MS)

Am ~ 0.015%
Cm < 0.002%

Am, Cm, Ln > 99.9%

Am ~ 150 mg/L
Cm ~ 15 mg/L
Ln ~ 2.5 g/L
V ~ 1 L/h
Future fuel cycle options in the 2006 Act: the 2012 milestone

1. 2005 conclusions:
 - Transmutation of Fission Products (I, Cs, Tc) is either not feasible or unrealistic; it should be abandoned
 - MAs transmutation is not realistic in LWR; on the contrary, for FR, transmutation calculations and experiments at pin scale have been carried out for americium and neptunium in a power reactor, such as Phénix, which demonstrates the feasibility of their transmutation in SFR

2. 2006-2012 objectives
 - Define the several recycling options of interest, which could be successively deployed (heterogeneous, homogeneous, all-actinide, Americium only, ...)
 - Assess benefits / costs ratio for the several recycling options, considering diverse criteria and “densification” of the final storage
 - Design / Optimize separation processes, transmutation fuels and their fabrication processes
 - and gather technical elements for industrial operation evaluation
Fuel cycle, the MA heterogeneous recycling option

- U, Pu, Np by COEX™
- Am (and Cm) separation : simplified DIAMEX-SANEX,…
- Am (and Cm) recycled on dedicated « targets-blankets »
Simplified SANEX-TODGA process

- Co-extraction An (III) and Ln (III) with TODGA, using HNO₃ 4N

- Selective back-extraction of An (III)
 - With polyamino-carboxylic hydrophile complexing agent

- Advantages: simple scheme, TODGA synthesis low cost
- Drawbacks: high sensitivity of the Am-Cm back extraction step to pH and temperature

CEA / Nuclear Energy Direction / Marcoule
Radiochemistry and Processes Department
FR 09, Kyoto, December 8, 2009
Fuel cycle, the MA homogeneous recycling option

The grouped actinide GANEX concept

Spent fuel

DISSOLUTION

1st step
U Extraction

UPuNpAmCm Conversion

 Pu+MA

2nd step
An Stripping

Ln Stripping

F.P.

Ln

WASTE

RECYCLE
The GANEX process

HA spent fuel solution ~ 4M HNO₃

Monoamide

DEHiBA

HDEHP-DMDOHEMA
HEDTA/citric acid

TRU + FP

TRU

Excellent compromise between complete Uranium extraction, and good U(VI)/Pu(IV) selectivity

Adaptation of the process already demonstrated in 2005

CEA / Nuclear Energy Direction / Marcoule
Radiochemistry and Processes Department

FR 09, Kyoto, December 8, 2009
1st step: U selective extraction

GANEX demonstrative hot runs, 2008

2nd step: Pu-Np-Am-Cm co-recovery (DIAMEX-SANEX diamide-based process)

(performing successfully in November 2008)
Partitioning: concepts and results

- **Enhanced separation:**

 PUREX / COEX

 U (Np) (U)Pu(Np)

 DIAMEX / SANEX

 Am and Cm

 SF

 FPs.

Chemical structures:

- HEDTA
- Other chemical structures (not clearly visible)

CEA / Nuclear Energy Direction / Marcoule
Radiochemistry and Processes Department
Partitioning: concepts and results

- **Enhanced separation**

 - PUREX / COEX
 - U (Np)
 - (U)Pu(Np)

 - DIAMEX / SANEX

 or

 - SANEX-TODGA
 - Am and Cm

- **Grouped separation**

 - GANEX-1
 - U

 - GANEX-2
 - Pu Np Am Cm
Partitioning: concepts and results

Enhanced separation:

- PUREX / COEX
- DIAMEX / SANEX
- Am(Np) separation
- FP and SF

Grouped separation:

- GANEX-1
- GANEX-2
- U, Pu, Np, Am
- FP and SF

Am only separation:

- PUREX / COEX
- EXAM
- Am
- FP and SF

CEA / Nuclear Energy Direction / Marcoule
Radiochemistry and Processes Department

FR 09, Kyoto, December 8, 2009
Separation process: towards industrialization

Extractant synthesis

Core of the process demonstrated at lab scale

- Extr-scrub.
- An stripping
- Ln stripping

Equipment
- Implementation, extrapolation

In situ analysis
- Cations, pH...

FP solution adapted to vitrification
- Concent., Calcination

Long term effects
- (solvent treatment)

Modeling
- (flowsheet, sensitivity, operation)

An(III) + Ln(III)

FP
- PUREX or COEX
- Raffinate

Interface Co-conversion

- DTPA pH 3-4

- Ln
MA bearing fuels: development of fabrication process

- **Synthesis of MA compound powders**, starting from separated MA nitric solution (interface co-conversion)
- **A promising process**: the oxalic co-precipitation, calcination, then direct-powder or UO$_2$-diluted powder pelletizing

• Characteristics of the powders: physico-chemistry, purity, flowability, sintering properties, ...

• Technology: continuous precipitation apparatus: vortex effect, pulsed column, ...

• Modeling
Conclusion : towards 2012 milestone

- **Recycling options**, for sustainable FR systems
- Some **options** still open (what, and how), assess benefits/cost ratio by 2012: a progressive step by step approach (from U and Pu first, Am to MA recycling?)
- A need for **flexible** processes?
- On-going research in the CEA Atalante facility, with international collaboration for optimizing separation process (many process options already explored, optimization, simplification)
- A specific new and important program on **reprocessing modeling**
- **A consolidation program** for industrial potentiality by 2012
- From separated MA solutions to Am and MA-bearing experimental fuels: to be tested at pin scale in the ASTRID SFR after 2020 …