South Australian Uranium Mineral Systems: A spectrum of mineralisation across the ages and across styles.

Martin Fairclough
Chief Geoscientist, Geological Survey of South Australia

www.minerals.pir.sa.gov.au
Overview

• Update of Existing Uranium Mining Operations
• Exploration Projects to Watch
• Exploration Overview
• Mineral Potential Modelling (IOCG±U)
• Summary
South Australia continued to lead the nation as the primary state to explore for uranium in 2008.

Expenditure for uranium exploration in 2008 was $94 million accounting for 43% of Australia’s total uranium exploration expenditure.

Hosts two of Australia’s three uranium mines, Olympic Dam & Beverley, with a third under construction at Honeymoon.

Recent discoveries include:
- Four Mile (Quasar & Alliance Resources)
- Hillside (Rex Minerals)
- Mullaquana (Uranium SA)
TYPES OF URANIUM DEPOSITS
(known and potential)

- Breccia complex e.g. OD
- Sandstone (roll-front) e.g. Beverley, Honeymoon, Warrior
- U/C redox related?
- Vein style e.g. Crocker Well, Radium Hill
- Calcrete-hosted?
Olympic Dam – Copper-Gold-Uranium-Silver

BHP Billiton Ltd

- Largest uranium deposit, fourth largest remaining copper deposit and fifth largest gold deposit in the world. Also contains significant quantities of silver.

- Total Resource 8339 Mt at 0.88% Cu, 0.028% U₃O₈, 0.31 g/t Au and 1.5 g/t Ag
 - Gold only (non-sulfide) resource 151 Mt at 1.0 g/t Au.

- Reserve (ore) 399 Mt at 1.87% Cu, 0.058% U, 0.68 g/t Au and 4 g/t Ag.

- Production 2007/08 – 170 000 t Cu, 4144 t U₃O₈, 780 000 oz Ag, 80 517 oz Au.

www.bhpbilliton.com
Olympic Dam – Copper-Gold-Uranium-Silver

BHP Billiton Ltd

CURRENT ACTIVITIES:

- Expansion study continuing.

- Full production is set down for 2014.

- New 60 Mtpa Olympic Dam will have an approximate annual production of:
 - 750 000 t Cu, 19 000 t U_3O_8, 800 000 oz Au, 2 900 000 oz Ag.

www.bhpbilliton.com
Olympic Dam – Copper-Gold-Uranium-Silver
BHP Billiton Ltd

Olympic Dam – open pit outline compared to
Adelaide Central Business District
Beverley Mine – Uranium
Heathgate Resources Ltd

- Largest in-situ leach operation in the world.

- Total Resource 7.7 Mt at 0.27% U₃O₈ for a contained commodity of 21 000 t U₃O₈.

- Production 2007/08 – 719 t U₃O₈.

CURRENT ACTIVITIES:
- Successful exploration has continued in the east and south of the current mineral lease as part of the Beverley Expansion.

www.heathgateresources.com.au
Honeymoon – Uranium
Uranium One Inc – Mitsui & Co. Ltd

- Construction commenced, production to commence in 2010.
- Indicated Resource 1.2 Mt at 0.24% containing 2900 t (6.5 Mlb) U\textsubscript{3}O\textsubscript{8}.
- Estimated annual production of 400 t U\textsubscript{3}O\textsubscript{8}.
- Deposit occurs as five discrete mineralised sand packages in the Yarramba Palaeochannel.
- Structural influence to mineralisation.
Four Mile – Uranium
Quasar Resources – Alliance Resources Ltd

- Tertiary sandstone-hosted mineralisation in two distinct zones: Four Mile West and Four Mile East.

- Inferred resource of 3.9 Mt at 0.37% U_3O_8 containing 15 000 t U_3O_8.

- Mining Lease Application submitted in May 2008.

- First Stage mining proposed for early 2010.

- Production estimated between 680-2045 tpa U_3O_8.
Crocker Well – Mt Victoria – Uranium

PepinNini Minerals Ltd – Sinosteel

- Inferred JORC compliant resource 12.5 Mt at 0.5 kg/t (0.05%) U_3O_8 (cut off grade 300 ppm).

- Production scheduled to commenced in 2011.

- Mineral lease application submitted to investigate production of ~600 t of U_3O_8 for at least 10 years.
Projects to Watch

- **Yarranna** – 1: 8m at 626ppm U$_3$O$_8$.

- **Goulds Dam**: Indicated resource 1.7 Mt at 0.12% containing 2000 t U$_3$O$_8$.

- **Oban**: Drillhole CEY376 intersected >5m (above 100ppm eU$_3$O$_8$) grade thickness of 0.28m% eU$_3$O$_8$.

- **Mt Gee**: Inferred 51 Mt at 615ppm for 31 400t U$_3$O$_8$.

- **Hillside**: 18m @ 297ppm U$_3$O$_8$, 2m @ 887ppm U$_3$O$_8$.

- **Mullaquana**: Pirie Basin, Eyre Peninsula. Inferred resource estimate 12 Mt at 0.02% eU$_3$O$_8$ for 2700 t U$_3$O$_8$.
Undiscovered Resources

• Where to from here?
• “how “to from here?
• Mineral Deposit Models and/or Mineral Systems modelling?
Uranium Deposit Classification

1. UNCONFORMITY-RELATED
2. SANDSTONE
3. QUARTZ-PEBBLE CONGLOMERATE
4. VEIN
5. BRECCIA COMPLEX
6. INTRUSIVE
7. PHOSPHORITE
8. COLLAPSE BRECCIA PIPE
9. VOLCANIC
10. SURFICIAL
11. METASOMATITE
12. METAMORPHIC
13. LIGNITE
14. BLACK SHALE
15. OTHERS
Uranium Deposit Classification

1. UNCONFORMITY-RELATED
2. SANDSTONE
3. QUARTZ-PEBBLE CONGLOMERATE
4. VEIN
5. BRECCIA COMPLEX
6. INTRUSIVE
7. PHOSPHORITE
8. COLLAPSE BRECCIA PIPE
9. VOLCANIC
10. SURFICIAL
11. METASOMATITE
12. METAMORPHIC
13. LIGNITE
14. BLACK SHALE
15. OTHERS
Mineral Systems

• Based upon understanding all the geological ingredients which comprise the mineral system, and how they vary and relate to each other.......................... PROCESSES!

• One side effect of utilising the Mineral Systems approach and concentrating on processes is that we are forced to consider related deposit types through time and space

• Case study - Regional IOCG±U potential, particularly using geophysics in areas of limited outcrop (which should work in outcropping areas)
URANIUM MINERAL SYSTEMS and FLUIDS

Meteoric, seawater

BASIN- and SURFACE-RELATED U SYSTEMS

(2) Unconformity U (PGE, Au)

(3) Sandstone U Formation waters / connate waters

Diagenetic fluids

(4) Calcite U Groundwaters

(1) Shallow U-bearing hematite IOCG

MAGMATIC-RELATED U SYSTEMS

(10,12,13,14)

(7) Volcanic

(8) Intrusive

(9) Vein

HYBRID U SYSTEMS

(1,3,9,10,11)

Deep (mgt) IOCG

Magmatic-hydrothermal fluids

‘METAMORPHIC’-RELATED U SYSTEMS

(5) Metasomatic

(9) Vein

‘Metamorphic’ fluids

(incl. metamorphic rock-buffered)

(#) represent deposit types from IAEA Red Book & Dahlkamp (1990). Skirrow et al, 2009, Geoscience Australia
Mineral Systems

- Based upon understanding all the geological ingredients which comprise the mineral system, and how they vary and relate to each other.

- One side effect of utilising the Mineral Systems approach and concentrating on processes is that we are forced to consider related deposit types through time and space.

- We can then delineate the consequences of these processes as mappable criteria.

- In SA we can map criteria for sandstone-hosted, unconformity related and IOCG±U potential, particularly using geophysics in areas of limited outcrop (which should work in outcropping areas).
Mineral Systems

• Mappable criteria
Uranium Occurrences Map

- Known uranium occurrences and significant geological parameters for each deposit type have been collated and represented spatially as ‘key ingredients’ maps.

- First step in predictive modelling for different uranium deposit types:
 - IOCG±U
 - Groundwater gradients, chemistry and distance from source.
 - Basement controlling structures.
 - Pandurra Formation 3D Model.
Mineral Systems

• In detail for hard rock systems......
ADELAIDE
Prominent Hill Carrapateena
Iron Oxide - Copper - Gold ± Uranium
Olympic Dam
200 km
Moonta - Wallaroo Hillside
Gawler Range Volcanics
44 000sq km
Hiltaba Intrusions
Mineral Systems

• In detail for soft rock systems......
ADELAIDE
Olympic Dam
Prominent Hill
Carrapateena
Rollfront/ Palaeochannel Uranium
Moonta - Wallaroo
Eucla Basin
Eromanga Basin
Narlaby
Yaninee
~ 55 to 2 Ma
Mt Gee
Beverley
Oban
Honeymoon
Warrior
Crockers Well
Moonta - Wallaroo
Narlaby
Yaninee
Rollfront/ Palaeochannel Uranium
~ 55 to 2 Ma
Murray Basin
ADELAIDE
www.minerals.pirs.sa.gov.au
Reactive Transport Modelling

oxidised granite

Palaeochannel

reduced layers

oxidised layers

oxidised basin fill

elevated U

12 km

“pyrite out” REDOX front

“hematite in” REDOX front

Pyrite_s_moles_t
3.673e+000
2.755e+000
1.836e+000
9.182e-001
0.000e+000

Hematite_s_moles_
2.072e+000
1.554e+000
1.036e+000
5.181e-001
0.000e+000

www.minerals.pir.sa.gov.au
Mineral Systems

- In detail for hard/soft rock systems......
Mineral Systems

• In detail for IOCG systems......
Deposit Style

Proterozoic Fe Oxide-Cu-Au+/-U Deposits.

• Examples of this style of deposit include Olympic Dam, Henry, Starra, La Candelaria, Osborne. The major districts of these deposits in Australia are the Gawler Craton (South Australia), Mt Isa Eastern Succession (Queensland) and the Chile Coastal Belt.

Important characteristics for this class include Age, Tectonic Setting, Association with Igneous Activity, Structural Control, Morphology

• Three of the most important are alteration, mineralogy and structure
 - Host rocks are intensely altered (sodic potassic, potassic or hydrolytic alteration)
 - Abundance of Fe-oxide (not iron sulphides) and a suite of metals that may include U, Cu, Au, Ag, Mo, Co, As, Zn and minor REE’s
 - Strong potential field characteristics – easily mappable!
<table>
<thead>
<tr>
<th></th>
<th>Reduced</th>
<th>Oxidized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ernest Henry</td>
<td>• Magnetite</td>
<td>• Hematite</td>
</tr>
<tr>
<td></td>
<td>• K-feldspathization</td>
<td>• K-feldspathization</td>
</tr>
<tr>
<td></td>
<td>• Cpy</td>
<td>• Cpy-Bnt</td>
</tr>
<tr>
<td></td>
<td>• Breccia-hosted</td>
<td>• Breccia-hosted</td>
</tr>
<tr>
<td></td>
<td>• Minor shearing</td>
<td>• Breccia-hosted</td>
</tr>
</tbody>
</table>

| **Sue Dianne** | • Hematite | • Cpy-Bnt |
| | • K-feldspathization | • Breccia-hosted |

| **Olympic Dam** | • Hematite | • Cpy-Bnt-Cct |
| | • Sericitization | • Breccia-hosted |

| | **High T** | **Low T** |
| | Deep (5-6 km) | Shallow (<2 km) |
Olympic Dam

Geology and structure
Contributors to the formation of Olympic Dam

Roxby Downs Granite

Co-eval felsic volcanism

structure

hydrothermal fluids

Olympic Dam

magmatic fluids

surficial fluids
Contributors to the formation of Olympic Dam

Roxby Downs
Granite

Olympic Dam
9 Geothermal Licensees or applicants

60 Geothermal Exploration Licences over 27,968 km²

Only some will eventuate – but the total indicative 5-year work programs correspond to more than $400 Million

Just 1 GEL has hot rock emission-free energy potential to yield electricity equivalent to several Snowy Mountain Hydro Schemes

1 SM approx 550 MWe
Heat Flow Profile across the Olympic Dam Deposit

HOT GRANITES

![Graph showing heat flow profile with key points and distances.]

Government of South Australia
Primary Industries and Resources SA

www.minerals.pir.sa.gov.au
POTENTIAL-FIELD INVERSION

1.5% “magnetite”
Includes all susceptible minerals as their magnetite equivalent

0.5% “hematite”
Includes hematite, sulfides, other dense minerals, and remanent magnetisation
POTENTIAL-FIELD INVERSION
Targeting of zones of high fluid flow
eastern Gawler Craton

- **Fair targets:** Southeast and Northwest basin corners, moderate sinistral offset
- **Best targets:** Northwest & southeast corners of the basin, large sinistral offset, high fluid flow in basin adjacent to fault intersection
- **Moderate to poor targets:** Dextral offsets, northeast and southwest corners
- **Worst target:** No offset

Potential fluid flow:
- **Excellent**
- **Fair**
- **Moderate**
- **Poor**

www.minerals.pir.sa.gov.au
Mineral Potential Modelling

IOCG±U Potential – Method
• Area selection.
Mineral Potential Modelling

IOCG±U Potential – Method
- Area selection.
- Residual gravity and residual RTP TMI.
Mineral Potential Modelling

IOCG±U Potential – Method
- Area selection.
- Residual gravity and residual RTP TMI.
- Contouring.
Mineral Potential Modelling

IOCG±U Potential – Method
- Area selection.
- Residual gravity and residual RTP TMI.
- Contouring.
- Selection of anomalies.
Mineral Potential Modelling

IOCG±U Potential – Method

- Area selection.
- Residual gravity and residual RTP TMI.
- Contouring.
- Selection of anomalies.
- Determine geophysical highs - gravity.

www.minerals.pir.sa.gov.au
Mineral Potential Modelling

IOCG dominance methods:
- Area selection.
- Residual gravity and residual RTP TMI.
- Contouring.
- Selection of anomalies.
- Determine geophysical highs - gravity.
- Determine geophysical highs - magnetics.
Mineral Potential Modelling

IOCG±U Potential – Result

- The result, coincident gravity and magnetic anomalies offset by no more than 1,000 metres.
Mineral Potential Modelling

IOCG±U Potential – Uses

- Preliminary exploration site selection.
- Key Ingredients Mapping:
 - Coincident anomalies.
 - Hiltaba Granites.
 - Gawler Range Volcanics.
 - Faults.
 - Depth to basement.
Mineral Potential Modelling

IOCG±U Potential – Uses

- Preliminary exploration site selection.
- Key Ingredients Mapping.
- Mineral Potential Models:
 - Weights of evidence.
 - Neural network.
 - Expert system.

www.minerals.pir.sa.gov.au
Mineral Potential Modelling

IOCG±U Potential – Uses

- Preliminary exploration site selection.
- Key Ingredients Mapping.
- Mineral Potential Models:
 - Weights of evidence.
 - Neural network.
 - Expert system.
Mineral Potential Modelling

IOCG±U Potential – Uses

- Preliminary exploration site selection.
- Key Ingredients Mapping.
- 3D visualisation.
Mineral Potential Modelling

IOCG±U Potential – Uses
Mineral Potential Modelling

IOCG±U Potential – Further Work

- Shape recognition properties:
 - Elongation
 - Compactness
Mineral Potential Modelling

IOCG±U Potential – Uses

- Extrapolating to other areas
Mineral Potential Modelling
Mineral Potential Modelling

IOCG±U Potential – Further Work

- Shape recognition properties:
 - Elongation
 - Compactness
- Incorporate alteration data:
 - HyLogger
 - Petrological Database
- Apply to the eastern Gawler Craton IOCG±U province…
Summary

- South Australia has 40% of known resources in Uranium.
- Underlying Hiltaba event has generated the largest single uranium deposit in the world and subsequently........
- Overlying sedimentary successions provide excellent trap sites for world class projects (eg. Four Mile).
- The Mineral Systems approach is a powerful predictive tool for undiscovered resources