Ensuring Water in a Changing World

And the second states a second states

Assessment and Impact of regional water resources variability on energy production and development

Soroosh Sorooshian

Center for Hydrometeorology and Remote Sensing University of California Irvine

11th Scientific Forum: The Future Role of the IAEA 52nd IAEA General Conference Vienna, Austria Sept. 30th – Oct. 1st, 2008

UhiReSs&yAff(lidtfss:nAathrolin & (leCity tind Alr Econon (UA)

Ensuring Water in a Changing World

A Brief Review of Global Water Resources Issues!

Will We Be Running Out of Water?

Distribution of Freshwater

Figure 4.1: Global distribution of the world's water

Source: Data from Shiklomanov and Rodda, 2003. Freshwater has a global volume of 35.2 million cubic kilometres (km³).

Nature's Way of Making Freshwater: The Hydrologic Cycle

Distribution of Fresh Water Use

Expected Water Scarce Regions

(I6) Mean Annual Water Reuse Index

Decreased Flow to the Sea: Excessive Utilization

Colorado River: Great Source, But for How long?

WYOMING

ng Gorge Da

COLORADO

UTAH

NEVADA

• The Colorado River is the most regulated stream in the world.

• Since 1962, the river flow has been fully utilized.

• Salinity levels increase 15 folds from mountain headwaters to the Mexican border

The Colorado River Salinity Problem

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Salt loads continue to be an issue today

The Central Arizona Project currently brings about 1.5 million tons of salt per year to the center of the state. This amount of salt would fill 50,000 railroad cars.

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Groundwater Overdraft, land subsidence and sinkholes

Global Water Resources Development: Engineering Approach Control, Store, Use for Multi-Purpose Uses

A Century of Water Resources Development: Engineering success!

Glen Canyon Dam

Reservoir construction has slowed.

SOURCE: Dr. Peter H. Gleick, Pacific Institute for Studies in Development

Impact of Dam & Reservoir Construction

Some Facts about China's hydro power potential

Nearly 85000 Dams (Half of world's total)
16% of its power from Hydro.

Three Gorges Dam - China: Some Facts

Cost: \$25 Billion U.S. Labor: 25000 at any given time Lake Size: 39.3 BCM

Power Capacity: 26 generators, 85 BKW-Hr/yr (compared to Hoover Dam of 4 BKW-Hr/yr)

Two Major Dams in the World: same capacity, different Rivers

Time of Construction = 2003 Total Storage Capacity = 39.3 BCM Annual Inflow = 451 BCM Drainage Area = 1,000,000 Km²

Power Generation = 17,680 MW

Time to fill = 32 days

Time of Construction = 1935 Total Storage Capacity = 38.6 BCM Annual Inflow = 15.4 BCM Drainage Area = 432,500 Km² Power Generation = 2,074 MW

Time to fill = 2.5 years

Strong Link Between Water and Energy

The Energy Cycle Requires Water

Water Supply – Use – Disposal: All Require Energy

Example: The California State Water Project (SWP)

- Is the single largest user of energy in California.
- It requires an average of 5 billion kWhr_e /yr to operate.
- Pumping 1 acre-foot of water through the system to Los Angeles requires 3,000 kWhr_e.

[1 acre-foot is 326,000 gallons or 1233 cubic meters]

Palo Verde Nuclear Power Plant: Arizona U.S.A.

- Palo Verde is the only nuclear energy facility in the world not adjacent to a large body of water.
- The plant uses recycled water from the City of Phoenix for cooling. More than 20 billion gallons of this water are recycled each year.
- Palo Verde is the only nuclear energy plant that uses treated wastewater for cooling.

What Can We Say About Future Stresses On Water and Energy Resources?

• **Population Impact** (Certain!)

Increasing Population: Number of Mega Cities

Projected Global Population: 8.3 Billion by 2025

CONTRACTOR OF THE PROPERTY OF

Global Urban population 1970: ~37% 2010: ~53%

What Can We Say About Future Stresses On Water and Energy Resources?

Population Impact (Certain!)
Climate Impact

Atmosphere of Earth, Mars and Venus

Mars Thin atmosphere (Almost all CO₂ in ground) Average temperature : - 50°C

Earth 0,03% of CO₂ in the atmosphere Average temperature : + 15°C

> Venus Thick atmosphere containing 96% of CO₂ Average temperature : + 420°C

Planets and atmospheres

Earth's atmosphere: 78% nitrogen, 21% oxygen, and 1% other gases

Sources: Calvin J. Hamilton, Views of the solar system, www.planetscapes.com; Bill Arnett , The nine planets, a multimedia tour of the solar system, www.seds.org/billa/tnp/nineplanets.html

But There Are Greenhouse Gases

The Greenhouse Effect

Some of the sun's energy is reflected back into space

Greenhouse gases in the atmosphere trap some of the heat

Solar energy passes through the atmosphere, warming the Earth

What is causing the problem?

Methane concentration in atmosphere over last 10,000 years

concentration in

atmosphere over

Green-House Gases (GHG)

Source: D. Entekhabi 2008

The Important Question as to Whether: **Our Planet Is Warming Up and** The Hydrologic Cycle is Intensifying, has been addressed by The Recent IPCC Report

Global Temperature Anomalies: 2007

Surface Temperature Anomaly (°C) -3.5 -3 -2 -1 -0.5 -0.2 0.2 0.5 1 2 3 4

Source: NASA GISS 2007

Evidence for reality of climate change: Glaciers Melting

Muir Glacier, Alaska

Toboggan Glacier Alaska

A. Circa 1900 Photo Source: Munich Society for Environmental Research

B. Recent

2003 19()() Alpine glacier, Austria

Provided By: Kevin Trenberth

Climate, Hydrology and Water Resources

• How will Climate effect water Availability?

• Can we predict the future changes which are responsive to "user" needs?

Global Warming And Hydrologic Cycle Connection

Trend in Annual Precipitation, 1979 to 2005

Record Floods: Among the worst Natural Disasters

Flooding in Tana River Valley, Kenya, due to extended and unseasonal rain

More Powerful Hurricanes are Occuring!

Drought Patterns in Selected Regions (1920-2005)

Recent Extreme Drought Conditions in the U.S. Southwest

Climate Predictions into the Future!

Some Results from Long Time-Scales

Climate model Predictions about the future? \rightarrow globally

DJF Precipitation Changes CM2 - Old model

CM3 - Updated model

Significant differences in regional outcomes!

Source: Hadley Center (Climate Change Projections)

Improving Predictions of Regional Changes in Weather and Climate

The Nested Regional Climate Model

High Resolution Climate Modeling

Source: Dr. J Hurell – NCAR 2008

Remote Sensing Contributions

Remote Sensing Systems (Spectral Signal)

Different Instruments Measure Different Things

Hurricane Katrina from TRMM: August 28, 2005

The Role of the IAEA In Filling Critical Data Gaps

20/20 Vision for the Future: IAEA Director General's Report – February 2008

"the IAEA will facilitate the use of isotope hydrology and other nuclear tools to support the integrated management of water resources..." The Role of the IAEA In Water **Resources** Development: **1. Provide the "Know-How" For Water Resources** Monitoring **2. Reconstruction of Past Climate History**

3. Safe Disposal of "Nuclear Waste" From Nuclear Power Plants

IAEA Hydrology Program

Tritium t_{1/2}=12 yrs Recent recharge

Carbon-14 t_{1/2}=5730 yrs Long-term recharge

Ground Water Recharge can be studied over many time scales

Tracing Recharge Sources to Ground Water

> River development may have greatly decreased recharge for Juárez

Cente Slide content from Hibbs, Eastoe, Grandados, Dadakis & Hogan

The Role of the IAEA In Water **Resources** Development: **1. Provide the "Know-How" For Water Resources** Monitoring

2. Reconstruction of Past Climate History

3. Safe Disposal of "Wasted Fuel" From Nuclear Power Plants

Reconstruction of Proxy Records of Droughts:

- Analysis of Salt Isotopes from Dry Lake Beds

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

2000-year Climate history of central U.S.

The Role of the IAEA In Water **Resources** Development: **1. Provide the "Know-How" For Water Resources** Monitoring

2. Reconstruction of Past Climate History

3. Safe Disposal of "Wasted Fuel" From Nuclear Power Plants

Climate Sceparios Used in Decision making: Yucca Mtn.

Simulation of Net Infiltration Over the Proposed Nuclear Waste Repository Site: Yucca Mountain, Nevada

Yucca Mountain: Nuclear Waste Repository

Thank You for Your Attention

