International Conference on Research Reactors: Safe Management and Effective Utilization. Sydney, Australia. 5 – 9 November, 2007

NEUTRONIC ANALYSIS FOR THE FISSION ⁹⁹MO PRODUCTION BY IRRADIATION OF A LEU TARGET AT RECHT REACTOR

> J. Medel, G. Torres Chilean Nuclear Energy Commission

Contents

- Introduction
- RECH-1 general overview
- Description of the target irradiation system
- Neutronic and fission product inventory codes
- Neutronic results
- Activity results
- Conclusions

Introduction

- The Chilean Nuclear Energy Commission is participating in the IAEA Coordinated Research Project: "Developing Techniques for Small Scale Indigenous ⁹⁹Mo Production using LEU Fission or Neutron Activation".
- Fission ⁹⁹Mo will be produced irradiating, at RECH-1 reactor, a LEU-foil annular target of 13 grams of metallic uranium. KAERI will provide the LEU foil.
- Neutronic and activity calculations were performed and the corresponding results will be presented.

RECH-1 general overview

- <u>Reactor</u> : Pool type
- Nominal Power : 5 MW
- <u>Reflector</u> : Beryllium
- Moderator Coolant : Light water
- Control System : 6 absorber control plates
- Operation time at 5 MW : 24 h/week

RECH-1 general overview

Fuel element:

MTR type with 16 plates Enrichment: 19.75% 235 U Meat of U₃Si₂-Al 214.80 grams of 235 U

- Present core configuration: 32 LEU fuel elements
- LEU fuel element supplier: CCHEN
- <u>Conversion program</u>: Completed in May 2006

Present core configuration (N° 62)

FE: Fuel element

- Be: Beryllium element
- Bk: Blanking element
- **IP:** Irradiation position
- R₁: Pneumatic tube 1 1/8"

- EX: Experimental fuel element
- Al: Aluminum element
- Pb: Lead element
- X: Blank position
- R₂: Pneumatic tube 1 1/2" (M)

Core configuration Nº 62 BOC: 13/07/2007

G	Bk	Ве	Ве	Ве	Ве	Ве	Ве	Ве	Ве	Bk
F	Bk	AI	LR60 4.183	LR61 5.143	LR56 6.691	LR57 6.791	LR62 5.153	LR63 4.198	AI	LREX01 0.00
Е	Ве	LR53 5.359	LR51 7.632	LR45 15.936	LR01L 41.110	LR02L 41.882	LR46 16.543	LR50 7.880	LR55 5.447	Be
D	AI	Ве	LR47 9.567	LR41 20.744	IP	IP	LR42 21.833	LR48 10.310	Be	AI
С	Ве	LR52 5.352	LR49 7.177	LR44 15.703	LR03L 37.931	LR04L 37.837	LR43 16.755	LR82 7.710	LR54 5.644	Ве
в	Ве	Ве	LR66 3.974	LR67 4.610	LR58 5.863	LR59 6.145	LR64 4.721	LR65 4.399	Ве	Be
Α	R ₁	AI	Ве	Ве	IP	IP	Ве	Ве	IP	Be
н	AI	Bk	R ₂	IP	x	x	IP	Pb	Pb	AI

Description of the target irradiation system

LEU foil annular target

- 13 g LEU metallic uranium foil
- Foil dimensions: 50 mmx100mmx0.130 mm
- Uranium foil wrapped in a thin nickel fission product-recoil barrier of 15 microns thickness.
- The thin uranium foil is held between two aluminum tubes Inner tube: ID=26.42 mm OD=27.99mm with an undercut to position the foil Outer tube: ID=28.22 mm OD=30.15 mm Length: 152 mm
- Outer and inner tubes are swaged to give good thermal contact
- Perimeter of the inner tube is not covered completely by the foil

Core configuration with LEU target system in D2 position

G	Bk	Ве	Ве	Ве	Ве	Ве	Ве	Ве	Ве	Bk
F	Bk	AI	LR60 4.183	LR61 5.143	LR56 6.691	LR57 6.791	LR62 5.153	LR63 4.198	AI	Bk
Е	Ве	LR53 5.359	LR51 7.632	LR45 15.936	LR01L 41.110	LR02L 41.882	LR46 16.543	LR50 7.880	LR55 5.447	Be
D	Ве	LEU Target System	LR47 9.567	LR41 20.744	IP	IP	LR42 21.833	LR48 10.310	Be	AI
С	Ве	LR52 5.352	LR49 7.177	LR44 15.703	LR03L 37.931	LR04L 37.837	LR43 16.755	LR82 7.710	LR54 5.644	Be
В	Ве	Ве	LR66 3.974	LR67 4.610	LR58 5.863	LR59 6.145	LR64 4.721	LR65 4.399	Be	Be
A	R ₁	AI	Be	Be	IP	P	Ве	Be	IP	Be
н	AI	Bk	R ₂	IP	X	X	IP	Pb	Pb	AI

Core configuration with LEU target system in D5 position

G	Bk	Ве	Ве	Ве	Ве	Ве	Ве	Ве	Ве	Bk
F	Bk	AI	LR60 4.183	LR61 5.143	LR56 6.691	LR57 6.791	LR62 5.153	LR63 4.198	AI	Bk
E	Ве	LR53 5.359	LR51 7.632	LR45 15.936	LR01L 41.110	LR02L 41.882	LR46 16.543	LR50 7.880	LR55 5.447	Ве
D	AI	Ве	LR47 9.567	LR41 20.744	LEU Target System	IP	LR42 21.833	LR48 10.310	Be	AI
С	Ве	LR52 5.352	LR49 7.177	LR44 15.703	LR03L 37.931	LR04L 37.837	LR43 16.755	LR82 7.710	LR54 5.644	Be
В	Ве	Ве	LR66 3.974	LR67 4.610	LR58 5.863	LR59 6.145	LR64 4.721	LR65 4.399	Be	Be
A	R ₁	AI	Be	Be	IP	IP	Be	Be	IP	Be
н	AI	Bk	R ₂	IP	x	X	IP	Pb	Pb	AI

Codes

Neutronic calculations WIMS-D Spectral Transport Code CITATION Diffusion Code

 Fission product inventory calculations ORIGEN-S (SCALE 4.4 a)

Broad group energy structure in diffusion theory calculations, eV

- Group 5-group energy structure 3-group energy structure 2D calculations 3D calculations
 - 1 0.821 E+06 1.000 E+07
 - 2 5.530 E+03 0.821 E+06 0.
 - 3 2.100 5.530 E+03 0.00
 - 4 0.625 2.100
 - 5 0.000 0.625

- 0.821 E+06 1.000 E+07
- 0.625 0.821 E+06
 - 0.000 0.625

Axial thermal neutron flux in D2 and D5 without target irradiation system

Neutronic results

Average power densities, W/cm³ LEU target system in D2 position

G	Bk	Ве	Ве	Ве	Ве	Ве	Ве	Ве	Ве	Bk
F	Bk	AI	LR60 49.41	LR61 59.82	LR56 64.61	LR57 64.92	LR62 60.76	LR63 50.59	AI	Bk
Е	Ве	LR53 50.50	LR51 57.28	LR45 64.37	LR01L 62.59	LR02L 62.68	LR46 65.79	LR50 59.25	LR55 48.22	Ве
D	Ве	LEU Foil 7080.87	LR47 66.30	LR41 71.71	IP	IP	LR42 73.46	LR48 66.36	Be	AI
С	Ве	LR52 52.44	LR49 57.44	LR44 61.72	LR03L 60.21	LR04L 60.93	LR43 63.49	LR82 60.23	LR54 51.29	Be
В	Ве	Ве	LR66 47.25	LR67 52.58	LR58 53.96	LR59 54.58	LR64 54.69	LR65 52.21	Ве	Be
A	R ₁	AI	Be	Ве	IP	IP	Be	Be	IP	Be
н	AI	Bk	R ₂	IP	X	X	IP	Pb	Pb	AI

Average power densities, W/cm³ LEU target system in D5 position

G	Bk	Ве	Be	Ве	Ве	Ве	Ве	Ве	Ве	Bk
F	Bk	AI	LR60 50.20	LR61 60.55	LR56 64.88	LR57 64.72	LR62 60.10	LR63 49.80	AI	Bk
Е	Ве	LR53 47.65	LR51 58.93	LR45 66.09	LR01L 62.79	LR02L 62.85	LR46 65.25	LR50 58.35	LR55 47.40	Ве
D	AI	Ве	LR47 66.02	LR41 73.87	LEU Foil 10632.5	IP	LR42 73.03	LR48 65.41	Be	AI
С	Ве	LR52 49.58	LR49 59.16	LR44 63.54	LR03L 60.60	LR04L 61.19	LR43 62.99	LR82 59.30	LR54 50.40	Ве
в	Ве	Ве	LR66 48.15	LR67 53.52	LR58 54.47	LR59 54.49	LR64 54.10	LR65 51.35	Ве	Ве
Α	R ₁	AI	Ве	Ве	IP	IP	Ве	Ве	IP	Ве
н	AI	Bk	R ₂	IP	x	x	IP	Pb	Pb	AI

Activity results

⊕ _{th} , n cm ⁻² s ⁻¹	5.37×10 ¹³	6.63×10 ¹³	8.06×10 ¹³
A _{Mo-99} , Ci (EOI)	103	127	155
A _{fp} , Ci (EOI)	20,600	25,200	30,800
A _{Mo-99} , Ci (t _d = 24 h)	80.4	98.8	121.0
A _{fp} , Ci (t _d = 24 h)	1,150	1,410	1,720

Activity and specific activity of ⁹⁹Mo

	Φ_{th} =5.37 E+	-13 n cm ⁻² s ⁻¹	$\Phi_{\rm th}$ =8.06 E+13 n cm ⁻² s ⁻¹			
t _i h	A _{Mo-99} Ci	A _{sp} Ci/mg Mo	A _{Mo-99} Ci	A _{sp} Ci/mg Mo		
12.0	30.92	147.24	46.42	147.04		
24.0	58.09	134.44	87.37	134.79		
36.0	82.09	124.44	123.37	124.62		
48.0	103.00	115.97	155.0	116.24		

⁹⁹Mo activity for 13 grams of 19.75% enriched uranium

Total activity of fission products after 48 hours of irradiation

Specific activity of ⁹⁹Mo for different irradiation times

Conclusions (1)

- The present analysis has been based on the present core configuration of the RECH-1 reactor, with some modifications. The neutronic calculations were performed using WIMS-D and CITATION codes, supposing that the target would be introduced in the D2 or D5 positions of the reactor grid.
- The results of the 3D neutronic calculations show that the target irradiation system could be introduced in the position D5. Nevertheless is necessary to review the analyses and to consider a position of lower thermal neutron flux.

Conclusions (2)

- The fission product activities have been calculated using ORIGEN-S, considering irradiations at constant thermal neutron flux, taking into account different irradiation and decay times. The LEU foil has been located where the axial thermal neutron flux is maximum.
- The obtained results show that irradiating a LEUfoil annular target of 13 grams of metallic uranium during 48 hours at 5 MW, the produced ⁹⁹Mo activity would be sufficient to satisfy the demand.