

Simulation of Flow Behavior in the HANARO Reactor Pool by Using the MARS Code

2007.11.

C. PARK, H. Kim, S.W.Bae

□ Introduction

□ Flow behaviours in the HANARO pool

- * Measurements
- * CFD analysis
- □ Simulation of the HANARO pool by MARS code
- Concluding remarks

Introduction (1/3)

PCS of the HANARO

- ✤ Open-tank-in-pool type RR with 30MWth
- Upward forced convection cooling system
 - ♦ At normal operation : 90% PCS, 10% bypass flow
 - During shutdown and transient : pool water natural circulation Water

Secondary

Introduction (2/3)

□ Concerned areas for 3D flow behaviors in HANARO

- ✤ Inlet Plenum
 - \bullet Generation of vortex \rightarrow a possible cause of fuel wearing
- Chimney
 - Suppression of upward core flow
- ✤ Reactor pool
 - Behavior of bypass flow in the pool \rightarrow radiation level over the pool top

Introduction (3/3)

Multi-Dimensional T/H System Analysis Code, MARS

- Unification of RELAP5 (1D Module) and COBRA-TF (3D Module)
 - Multi-Dimensional TH Analysis Capability
- Coupled calculation capabilities
 - Three-Dimensional Reactor Kinetics Code, MASTER
 - Containment Analysis Code, CONTEMPT4 and CONTAIN

□ Objective

To simulate the HANARO reactor pool by MARS code from the viewpoint of practical operation and safety

Flow behaviors in the HANARO pool (1/5)

Estimation from measurements

- In commissioning test,
 - ◆ Core jet is suppressed by the bypass flow with > 5% of PCS flow
 - Radiation level at near pool surface : Measured > Calculated
 - \rightarrow One of reasons is bypass flow.
 - Installation of a hot water layer (HWL) system
- Temperature and Na-24 Activity distributions in the pool
 - ♦ 3 regions with different temperature
 - Distribution of Na-24 activity
 - > Most of bypass flow is sucked into the chimney at near chimney top.
 - > Mixing the hotter water in HWL and the cooler pool water
 - > Asymmetric flow below 6 m

Flow behaviors in the HANARO pool (4/5)

□ CFX simulation

- Modeling
 - ◆ Cell number : 17,620 & 28,600
 - ♦ Flow split : 1 vs 1.5
 - ♦ How water layer : 45 °C

Results

- Most of bypass flow are sucked into the chimney.
- But, a part rises upwards to the pool surface, forming a counter clockwise outer circulating flow.
- Show similar temp. distribution with the measurement
- HWL is well maintained if the .

Flow behaviors in the HANARO pool (5/5)

MARS simulation of the HANARO Pool (1/3)

□ Nodalization of the HANARO

MARS simulation of the HANARO Pool (2/3)

□ Simulation results

- Simulation
 - With a typical 1-D Nodalization for reactor pool
 - With 3-D Nodalization
- In overall, similar flow pattern with actual conditions
- Axially dominant flow, less circulating flow than that by CFD
 - ◆ Relatively smaller nodes
 - 1-D based solution method
- But, increased temperature in the middle region for calculation with 3-D nodalization

MARS simulation of the HANARO Pool (3/3)

□ Understandings of 3-D flow behaviours in the HANARO pool

□ Simulation by the MARS code showed

- the possibility to give reasonable prediction for the 3-D flow behaviour in the HANARO reactor pool
- the necessity to consider 3-D behaviour for 1-D calculation
- This capability may be useful to predict the effect of 3-D flow phenomena in a RR on
 - the core thermal margin during flow reversal transient
 - the establishment of natural circulation

Thank you for your attention !!!

