7 EMERGENCY INTERVENTION PLAN FOR 14 MW TRIGA - PITESTI RESEARCH REACTOR

Sorin MARGEANU, Marin CIOCANESCU, Constantin PAUNOIU Institute for Nuclear Research Piteşti, ROMANIA

Content:

- Introduction
- General description of the TRIGA
 Research Reactor
- Hypotheses for intervention
- Premises for intervention
- Conclusions

Introduction

The site:

INR (Institute for Nuclear Research Pitesti)

FCN (Nuclear Fuel Factory)

ANDRAD (National Agency for Radwaste Management)

Introduction

NUCLEAR RISK SOURCES:

TRIGA Research Reactor
 Post Irradiation Experiments Laboratory
 Radwaste Treatment Station
 Out of Pile Testing Facility
 Power Gamma Irradiation Facility

Nuclear Fuel Factory

14 MW TRIGA-SSR Research Reactor

Operational Characteristics of TRIGA-SSR Reactor

Power	14 MW
Maximum Thermal Flux	2,9 X 10 ¹⁴ n/cm ² s
Maximum centerline fuel temperature	750 °C
Core duration	16000 MW-days

TRIGA-ACPR Research Reactor

Operational Characteristics of TRIGA-ACPR Reactor

Peak stationary power	500 KW
Peak pulse power	20000 MW
Pulse duration	4.6 ms at 1/2 from peak pulse power

Introduction

Post Irradiation Experiments Laboratory – LEPI

<u>Activities</u> performed:

•Nondestructive and Destructive Fuel examination

Irradiated
 material
 examination

•Radioisotopes production

Defense in depth. Safety barriers

- 1. Fuel matrix,
- 2. Fuel cladding
- **3. Primary loop**
- 4. Reactor building
- 5. Distance between reactor building and exposed factor (population, environment).

As long as the integrity of safety barriers are maintained, the core radioactive inventory is contained.

Events:

internal

- Design Basis Accidents (DBA)
- Beyond Design Basis Accidents (BDBA)
- Fire

external

- Earthquake
- Airplane crash
- Terrorist attack
- Armed Conflicts (terrestrial or aerial)

Design Basis Accidents (DBA)

Damage of a single pin fuel in water with TRIGA specific release factors

Fraction of the core involved:	1 pin (0.14% from core)	
Fraction of the fission products released:	6.3 x 10 ⁻⁴	
Fraction of the fission products released in	the pool:	
- noble gases	100%	
- halogens	25%	
Fraction of the fission products released in	the reactor hall:	
- noble gases	100%	
- organic halogens	25%	
 elemental or particulate halogens 	s:1%	
Condition of the ventilation system:	normal	
Stack release rate:	24,360 m³/h	
Estimated dose:		
- in reactor hall	- effective dose: 0.1 mSv	
	- thyroid dose :18 mSv	
- at 250m downwind direction	- effective dose : 9.8x10 ⁻² mSv	
	- thyroid dose : 1.1x10 ⁻² mSv	

Beyond Design Basis Accidents (BDBA) Damage of a 25 pin fuel bundle in water with total release

Fraction of the core involved:	1 bundle (3.4% from core)	
Fraction of the fission products released i	in the pool:	
- noble gases	100%	
- halogens	25%	
Fraction of the fission products released i	in the reactor hall:	
- noble gases	100%	
- organic halogens	100%	
- elemental or particulate haloger	ns:1%	
Condition of the ventilation system:	emergency	
Stack release rate:	6000 m3/h	
Estimated dose:		
- in reactor hall	- effective dose: 56 mSv	
	- thyroid dose :7.9x10+3 mSv	
- at 250m downwind direction	- effective dose : 26 mSv	
	- thyroid dose : 4.2 mSv	

LEGAL FRAMEWORK

1. International regulations

2. National regulations

3. Internal regulations (accepted by <u>CNCAN</u>)

Regulatory control

The regulatory authority is CNCAN which exercises the statutory and legal activities related to the safety of the TRIGA research reactor in Pitesti.

For the TRIGA R.R. CNCAN established safety principles, associated criteria, regulations and standards upon which the regulatory activity is based.
 The regulatory authority CNCAN issues licenses for the specific activities of interest for the nuclear power industry, including R.R. starting, from the initial/ conceptual design, through siting, construction, commissioning, operation, maintenance, modification, decommissioning.

- Knowledge of human contamination pathways
- ALARA Principle (As Low As Reasonable Achievable)
- Averted Dose Criterion
- Emergency intervention plan on SCN site
- Public Authorities Notification Alarm Procedure
- Link with Emergency Intervention Plans of:
 - Local Authorities
 - Central Authorities

<u>1. JUSTIFICTION</u> Necessity to justify the doses based on benefit

3. LIMITATION

Necessity to apply dose limits

FUNDAMENTAL PRINCIPLES

 2. OPTIMIZATION

 Necessity to

 ensure maximum

 benefit (ALARA)

 Image: State of the state

Computerized support for nuclear accident

management

Computer codes

DOZIM (developed in ICN)
COSYMA (EU)
MACCS (USA)

<u>Site Specific</u> Databases

- Population
- Meteorological
- Agricultural production
- Animal production
- Consumption rates

•TRIGA Reactors– 45 years of operation without accidents or incidents potentially dangerous for radiological safety

•TRIGA Reactors installed in 24 countries, installed powers 20 kW ↔ 16 MW

•UZrH fuel— life time in reactor 3 – 4 times longer than other fuels

•UZrH fuel – better retention of fission products

•DBA Rate ~ 1 at 100.000 years

•TRIGA Reactors- safe for personnel, population and environment

TRIGA Reactors- "intrinsic safety" guaranteed by natural laws

INSTITUTE FOR NUCLEAR RESEARCH - PITESTI

PO.Box 78 No. 1, Campului Str. 115400 – Mioveni, Arges County, Romania

Tel: (+40)248.21.34.00 Fax: (+40)248.26.24.49 email: secretariat@scn.ro Web: http://www.scn.ro