9/30/2005

Imaging for Cancer Therapy

Wolfgang Schlegel

Department of Medical Physics in Radio-Oncology

State of the art in Cancer Therapy

Cancer incidence in Germany 400 000 / y

State of the art in Cancer Therapy

invisible

Targeting Problem

Targeting Problem

Tumor

Targeting Problem

Tumor

Organs at risk/ Normal tissue

The 3 tasks in

Morphology

Where is primary tumour tissue ?

Where are affected lymph nodes and metastases ?

Where is radiosensitive normal tissue ?

Detect the primary tumour
(including all tumour extensions) !

The 1st revolution in imaging for Radiation Oncology: from 2D (Radiography with X-rays) to 3D (Computerized Tomogrpahy, CT)!!

The 1st revolution in imaging for Radiation Oncology: from 2D (Radiography with X-rays) 1980-1990 to 3D (Computerized Tomogrpahy, CT)!!

Morphologic imaging with CT

Morphologic imaging with CT

Morphologic imaging with CT

Scientific Forum, IAEA, 2005

Morphologic imaging with CT

Morphologic imaging with CT

Cancer can be detected by X-ray CT, if the tumour tissue has a lower or higher density than surrounding tissue

The contribution of MRI

MRI-Brain image clearly demonstrates a lesion which is barely detectable on the CT.

 Detect the primary tumour (including all tumour extensions) !

1. Detect the primary tumour (including all tumour extensions) !

- 2. Detection of
- Involved lymph nodes
- Distant metastases

1. Detect the primary tumour (including all tumour extensions) !

- 2. Detection of
- Involved lymph nodes
- Distant metastases

The contribution of PET

PET image showing metastases (a positive para-aortic lymph node) Which can not be detected in CT

PET image showing metastases (a positive para-aortic lymph node) Which can not be detected in CT

1. Detect the primary tumour (including all tumour extensions) !

- 2. Detection of
- Involved lymph nodes
- Distant metastases

1. Detect the primary tumour (including all tumour extensions) !

- 2. Detection of
- Involved lymph nodes
- Distant metastases

3. Detect radiosensitive normal tissue (organs at risk) !

Imaging of Organs at Risk

Functional Magnetic Resonance Imaging fMRI

Movement cortexes

Patient with a glioblastoma: finger tapping fMRI EPI image (from Schad. NMR Biomed 2001;14:478-483)

14.09.05 page 13 W.Schlegel Scientific Forum, IAEA, 2005

Imaging of Organs at Risk Diffusion tensor Imaging (DTI)

images from Stephen Correia, 2005

Imaging of Organs at Risk Diffusion tensor Imaging (DTI)

MR tractography

images from Stephen Correia, 2005

Imaging of Organs at Risk

Patient with a brain tumour (glioblastoma) and white matter fiber tracts

(images from Dr. Sumu Mori, Johns Hopkins University, Baltimore)

1. Detect the primary tumour (including all tumour extensions) !

- 2. Detection of
- Involved lymph nodes
- Distant metastases

3. Detect neigbouring organs at risk !

1. Detect the primary tumour (including all tumour extensions) !

- 2. Detection of
- Involved lymph nodes
- Distant metastases

3. Detect neigbouring organs at risk !

 How does the tumour shape and location change from day to day ?

 How does the tumour shape and location change from day to day ?

Interfractional

 How does the tumour shape and location change from day to day ?

Interfractional

 How does the tumour change during beam delivery ?

 How does the tumour shape and location change from day to day ?

Interfractional

 How does the tumour change during beam delivery ? Intrafractional

Only 2% of the irradiated volume is tumour tissue !

Image Guided Radiotherapy/ Time adapted radiotherapy

Extension of 3D- Conformal Therapy to the 4th dimension: **time**

Aim: Adapt treatment to patient- and organ- movements

Image Guided Radiotherapy/ Time adapted radiotherapy

Extension of 3D- Conformal Therapy to the 4th dimension: **time**

Aim: Adapt treatment to patient- and organ- movements
Patient is treated on up to 30 days !

Image Guided Radiotherapy/ Time adapted radiotherapy

Extension of 3D- Conformal Therapy to the 4th dimension: **time**

Aim: Adapt treatment to patient- and organ- movements

Patient is treated on up to 30 days !

Imaging of Movement

- Interfractional Imaging (day to day movement)
- Intrafractional Imaging (movement during beam delivery)

Image Guided Radiotherapy/ Time adapted radiotherapy

- CT in treatment room
- 3D Cone Beam CT integrated into a Linac
- Tomotherapy (see contribution of Rock Mackie)

IGRT Hardware @DKFZ

In-room CT:PRIMATOM

Interfractional imaging

Example: Prostate – 1. Control - CT

Example: Prostate – 2. Control - CT

Example: Prostate – 3. Control - CT

Example: Prostate – 4. Control - CT

IGRT Hardware @DKFZ

Prototype: In-line CT: PRIMUS + FPI + kV-source

ARTISTE – SMS/OCS

Interfractional Adaption

- Automatic patient positioning
 - 3D Cone Beam CT in treatment position
 - Matching with planning CT
 - Automatic determination of table shift
 - Repositioning + treatment
 - Extra time per patient: ca. 10 min.

kV-CBCT Short Scan: prostate

Reconstruction of data by M. Mitschke SMS/OCS

matching with planning CT

Result: shift the patients' couch with Δ r = (0.1, 2.7, 2.2) mm

Intrafractional Adaption: Gating

- ,Gated Irradiation' of moving lung tumors
 - 4D Diagnostisc CT
 - 4D Cone Beam CT
 - Gating window around exhale phase (..)

Ungated Fluoroscopy

0° Beam

Gated Fluoroscopy: 0° Beam

• How does the tumour shape and location change from day to day ?

- How does the tumour shape and location change from day to day ?
- How does the tumour changes during beam delivery ?

- How does the tumour shape and location change from day to day ?
- How does the tumour changes during beam delivery ?

In room CT

Integrated Cone beam CT Tomotherapy

- How does the tumour shape and location change from day to day ?
- How does the tumour changes during beam delivery ?

In room CT

Integrated Cone beam CT Tomotherapy

4D CT, X-Ray Fluoroscopy + Markers

Where are the radio-resistant areas within the tumour ?

Where are the radiosensitive areas within healthy tissue ?

Molecular Profiling

Hypoxia

Hypoxic areas within the tumour are highly radioresistant

Cellular Proliferation

Uncontrolled cellular proliferation is one of the hallmarks of malignant tumours

Apoptosis

Apoptosis ("programmed cell death") is the major form of cell death induced by radiation

Angiogenesis

The formation of new blood vessels from pre-existing vasculature is an essential step in tumour progression and metastasis

Receptor status

Receptor molecules (growth factors and hormones) may affect radiosensitivity of tumour cells

Molecular Profiling: Imaging of hypoxia with PET (18F-FAZA + CT)

Patient with a laryngeal cancer.

(Courtesy of Dr. M. Piert, Nuclear Medicine Department, Technical University Munich, Germany).

Molecular Profiling: Imaging of proliferation with PET (18FLT)

18-FDG

18-FLT

Patient with low grade glioma, PTV (pink) and OAR (brain stem, blue) from CT-based treatment plan

Molecular Profiling: detecting proliferation with 1-H-MR-Spectroscopy

Molecular Profiling: detecting proliferation with 1-H-MR-Spectroscopy

MRI: T2-Image with GTV (yellow)

GTV (yellow) + Parameter mapping from MRS

dkfz.

Myumm

MRI: T2-Image with GTV (yellow)

GTV (yellow) + Parameter mapping from MRS

W.Schlegel

14.09.05

page 42

dkfz.

MRI: T2-Image with GTV (yellow)

The concept of a "biological target volume"

(From Apisanthanrax, Rad. Res. 163, 2005)

W.Schlegel Scientific Forum, IAEA, 2005

(From Apisanthanrax, Rad. Res. 163, 2005)

W.Schlegel Scientific Forum, IAEA, 2005

Molecular Profiling	Most promising PET- or SPECT- markers ¹ :	MRI/ MRS
Hypoxia	¹⁸ F-FAZA ⁶⁰ Cu-ATSM	BOLD
Cellular Proliferation	¹⁸ FLT ¹¹ C-Met Choline	¹ H-Cholin-MRS
Apoptosis	Annexin 5	
Angiogenesis	¹⁸ F-Galacto-RGD	
Receptor status	¹⁸ F-FES	

1= see Apisarnthanarax 2005

Conclusions

Local tumour control and side effects in radiotherapy strongly depend on our ability to characterize

- Morphology
- Movement
- Molecular Profiling

Conclusions

Local tumour control and side effects in radiotherapy strongly depend on our ability to characterize

- Morphology
- Movement
- Molecular Profiling

While conventional therapy was mainly based on morphology only, we are now starting to include movement and biology, leading to

- Time adapted radiotherapy and
- Biological adapted radiotherapy

- Integrated cone beam imaging/ tomotherapy
- Real-time imaging

- Integrated cone beam imaging/ tomotherapy
- Real-time imaging

MRI fMRI MRS

- Integrated cone beam imaging/ tomotherapy
- Real-time imaging

- stronger
 MRI magnetic fields
 (3T + 7T)
 Improved resolution
 - faster sequences

• Integrated cone beam imaging/ tomotherapy

W.Schlegel

 Real-time imaging

- stronger MRI magnetic fields (3T + 7T)fMRI MRS
 - Improved resolution
 - faster sequences

SPECT/ PET

- Integrated cone beam imaging/ tomotherapy
- Real-time imaging

- stronger MRI fMRI MRS
 - magnetic fields (3T + 7T)
 - Improved
 - resolution
 - faster sequences

The future: integration of morphological, functional and biological imaging into radiotherapy

Radiation Therapy MRI

fMRI

MRS

SPECT/ PET

SPECT/ PET

Integration of morphological, Functional & biological imaging

The 2nd imaging revolution in Radiation Oncology

Improved local tumour control

