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Two approaches to reactor modeling

Device modeling Physics modeling

Empirical models  describe
observed behavior of as a function
of key parameters based on 
experimental correlations. Relationships 
specific to design details. 

�Nusselt vs. Peclet numbers for different 
P/D 
�Gap conductance vs. burnup
�Fuel-to-cladding gap vs. linear heat 
rate to incipient melting 
�Effective friction factor vs. Reynolds 
Number
�% fission gas release vs. burnup
�Fuel conductivity vs. burnup
�Cross-flow in pin bundles
�Turbulent diffusion

Governing physical equations 
Solved numerically on 3d meshes

� Navier Stokes equations
� Non-homogenized transport
� Monte Carlo transport
� 3D finite element fuels codes 
informed by atomistic modeling
� Chemistry

Mixed physics/empiricism
• sub-channel models
• homogenized transport
• 1.5-D fuels codes

Most successful models Increasing work in this area --
some successes and many 
challenges. High potential.

Supercomputers

Modern
Desktop

Yesterday’s 
computers

"I would rather have today's algorithms on 
yesterday's computers than vice versa." ---
Phillipe Toint
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Existing capabilities
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Developing Mature

Simulations  mostly involve 
better understanding the 
methods themselves

Simulations endeavor to 
provide solutions that 
elucidate key physics 

Simulations aim to calculate 
specific number/value as 
well as experiment

Fuels Materials Thermal-hydraulics Neutronics

Must carefully distinguish proof of principle vs. direct applications of advanced methods



Example: Fast Reactor steady state core heat transfer
Device modeling Physics modeling

• subchannel modeling: 1-d 
axial energy and momentum 
balance equations for each 
channel

• Relatively large number of 
parameters determined by 
experiments: diversion 
crossflow, turbulent mixing, 
shear forces

• Cobra, Super-Energy, etc. 
popular codes for fast 
reactors written in the 70s 

• Couple to homogenized 
neutronics code

•Conjugate heat transfer 
with incompressible single 
phase N-S equations

•Treat fuel, gap, and 
cladding as material with 
known α = α(Τ) 

•Mesh wire wrap, gap, 
cladding, and pin positions

•Inflow and outflow bc’s

• Non-linear heat transfer 
problem: Iterate source 
computation until 
convergence

• Single phase
• Low Pr � more easily resolved 
thermal boundary layers
•Channel Re ~ 50,000
•Need  to model turbulent energy 
transfer
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• Transition to turbulence with inflow/outflow boundary conditions in 7-pin x 3H 
configuration occurs at z ~ H/2: 
– use of periodic BCs is warranted, 
– significant savings (10 x)
– to be verified for larger pin counts (edge effects)

laminar turbulent

Discovery of new physics using more science-based simulation: “virtual experiments”

DNS  of single pin

LES of a 217-pin LMFBR assembly Passive scalar transport in an LMFBR assembly

Important discoveries of flow field from CFD: Pointer talk
• much different physics between 19 and 37 pin assemblies
• affect of wire wrap on turbulent transport 



Key parameters in T-H modeling
Multiscale simulation hierarchy involving:

1. Experiments
2. DNS (direct numerical simulation of turbulence)

~50 M pt/channel (e.g., in subassembly simulation)
3. LES  (large eddy simulation)

~5 M pts/channel
4. RANS (Reynolds-averaged Navier-Stokes)

~20,000 pts/channel
5. Subchannel or lumped-parameter models

~150 pts/channel

Multiscale approach provides an important validation path:
• In the past, only Options 1 and 5 were available.
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Increased Modeling 
(uncertainty)
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State of the practice

� Several recent studies addressing issues related to applying 
CFD to reactor analysis (including fast reactors)

– ECORA Project: “Evaluation of Computational Fluid Dynamics for 
Reactor Safety Analysis”
• CFX, Fluent, Saturne, STAR-CD and Trio_U

– NEA/CSNI report “Best Practice Guidelines for the Use of CFD in 
Nuclear Reactor Safety Applications”

– ASCHLIM Project: “Assessment of Computational Fluid Dynamics 
Codes for Heavy Liquid Metals”
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Broad conclusions

� Use of CFD codes is recommended if there are important 3-D aspects of 
the systems thermal-hydraulics that need to be resolved at smaller scales 
than can be handled by standard system and containment

� For foreseeable future CFD will be confined to specific isolated phenomena 
and sub-regions

� Typical instances for reactor safety problems include e.g.
– flow-induced vibration of structures
– erosion of surfaces
– mixing and stratification
– heterogeneous flow situations
– Sodium fires
– Effect of fuel rod displacement on temperature profile
– Sodium/water chemical reactor Induced by steam generator tube rupture
– Thermal striping in T-junctions, upper plenum
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Broad conclusions, cont.

� Most of value of CFD analysis will be derived from coupling to traditional system analysis 
codes to address very specific local problems. 
– “Modeling of Thermal Stratification in Sodium Fast Reactor Outlet Plenums During Loss of Flow 

Transients”, T. H. Fanning and T. Sofu
– "Evaluation on natural circulation behavior of the 4S by integrated analytical models", A.Matsuda, 

H.Watanabe, J.Ohno
– Thermal-Hydraulic Calculation for Simplified Fuel Assembly of Super Fast Reactor Using Two-Fluid 

Model Analysis Code ACE-3D”, T. Nakatsuka, T. Misawa, H. Yoshida and K. Takase
– “Development of computational method for predicting vortex cavitation in the reactor vessel of 

JSFR”, Hamada et al
– Nature of coupling (on vs. two-way) can complicate analysis

� Weak coupling to derive bulk parameters for sub-channel models
– “LES of Cross-Channel Mixing in Wire-Wrapped Subassemblies”, Fischer

� Modeling limitations that must be addressed
– Gas bubble two phase flows
– Free-surface flows
– Temperature gradients and related buoyancy flows: 

• Turbulent liquid metal heat transfer along a heated rod within an annular cavity, R. Stieglitz, A. 
Batta, J. Zeininger

– Subgrid modeling issues for low-Pr flows
– Sensitivity of solution to complicated gridding/numerical issues. 
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“LES of Cross-Channel Mixing in 
Wire-Wrapped Subassemblies”, 
Fischer

“Demonstration of 
Coupled Safety 
Modeling Using High 
Fidelity Methods”, 
Fanning et al

“Direct simulation of a passive scalar flow in a
Turbulent swept flow over a wire in a channel”, 
Pantano et al

“RANS Simulations of Turbulent Diffusion in 
Wire-Wrapped Sodium Fast Reactor Fuel Assemblies”,
Pointer et al
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Validation
• Validation: Concerns attempts to build and 

quantify level of confidence in code predictions

• Should not be thought of as a binary “yes” or “no”
decision. 

– Interpretation is problem-specific and depends heavily 
on intended use of code

• Takes place subsequent to verification

• More than sensitivity analysis for uncertain input 
parameters

• For  science-based codes e.g. verification likely 
more critical

• No one-size-fits all: neutronics, T-H, and fuels 
modeling all treated differently

• Tiered approach: Complete system; subsystem, 
benchmarks, unit cases  
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• “Validation of fast reactor thermo-mechanical and thermo-hydraulic codes”
IAEA-TECDOC-1318,p. 13, November 2002.

– First determine range of damaging frequencies for given wall thickness 

– Duration of simulation should be deduced from the lower bound of the range; transient 
duration should cover at least 10 periods of this low frequency

– LES is recommended, requiring O[2] discretization schemes

– Time step must resolve oscillations at higher bound of damaging frequencies

– Boundary conditions should include possible secondary flows (e.g. swirl flow) and low-
frequency variations of temperature and/or velocity

– Boundary condition sensitivity analyses are critical

– Care must be given to the transient behaviour of the computational mesh adjacent to the wall 
in association with a transient heat transfer coefficient with induced filtering of high 
frequencies.
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Neutronics
� Methods improvements need to be guided by solution to 

real problems
� Good example: negative Reactivity Transients of PHENIX
� Four unexpected scrams occurred in 1989 - 1990 due to 

short negative reactivity transients (200 ms) with the 
same signal shape
� Several potential explanations were given, but not 

satisfactory
� Experiments are planned for PHENIX end-of-life tests 

for further investigation
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� Current tools are judged to be adequate to begin the ABR design process
� However, based on various approximations and sophisticated multi-step 

procedures
– Average parameters for whole-core calculations are determined by a 
series of sub-domain calculations with increased modeling details and 
approximate boundary conditions

– Detailed information is approximately recovered by reconstruction 
(de-homogenization) method

Status of Deterministic Design Analysis Tools

Pin Cell 
Calculation

Assembly 
Calculation

Whole Core 
Calculation

Homogeneous 
Medium 
Calculation
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� Improved accuracy is needed to meet burner design challenges
– Radial blanket is typically replaced by reflector
– High leakage configurations also challenge design methods
– Improved pin power and flux distributions

� Applicable range of problems needs to be extended
– Possibly different assembly geometry (e.g., grid spacer for low CR core)
– Modeling of structure deformation (for accurate reactivity feedback)
– Neutron streaming in voided coolant condition
– Control assembly worth (relatively large heterogeneity effects)

Status of Deterministic Design Analysis Tools

Assembly design 
concepts of JSFR
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� Monte Carlo method can represent these details geometric complexity 
and complicated energy dependence of nuclear data
– Need sufficiently low uncertainty, reliable variance estimates and 
uncertainty propagation

– Fission source convergence
– Error prediction accuracy 

� Computing resource requirements still remain unmanageable for many 
types of routine design analyses, including
– Accurate estimation of local reaction rates
– Effects of small perturbations, 
– Transients analysis
– Error propagation via depletion
– Thermal feedbacks

� Thus, the current design tools heavily rely on deterministic methods
– Monte Carlo methods are typically used for steady-state reference solution

Status of Monte Carlo Codes
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� A modern, integrated design tool is crucial to improve the current 
design procedure, which is time-consuming and inefficient
– Eliminate piecemeal nature vulnerable to shortcomings in human 
performance, organizational skills, and project management
• Improved automation of data transfers among codes/modules

– Greatly improve the turn-around time for design iterations
– Utilize advances in computer science and software engineering

� Improved modeling in the integrated design tool would allow 
radical improvements
– Reduced reliance on costly experiments

• Integral mockup experiments
• Thermal-hydraulic experiments to derive correlations

– Remove unnecessarily conservative design margins
– Ability to optimize the design (e.g., reduce nominal peak temperatures)
– New knowledge to alter and redirect the design features and approach

Benefits of Advanced Simulation Tools



Conclusions

� Increasing interest internationally in advanced simulation 
reactor design/safety

� Much of this is enabled by HPC

� Science-based methods range tremendously from speculative 
to nearly mature

� Most critical aspect of approach is to define project with clear
goals, metrics for success, and 
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