# Advanced Simulation: applications for fast reactors

## Andrew Siegel Argonne National Laboratory

## Two approaches to reactor modeling



# **Existing capabilities**



Must carefully distinguish proof of principle vs. direct applications of advanced methods

## Example: Fast Reactor steady state core heat transfer

**Device modeling** 

- subchannel modeling: 1-d axial energy and momentum balance equations for each channel
- Relatively large number of parameters determined by experiments: diversion crossflow, turbulent mixing, shear forces
- Cobra, Super-Energy, etc. popular codes for fast reactors written in the 70s
- Couple to homogenized neutronics code



- Single phase
- Low Pr → more easily resolved thermal boundary layers
- •Channel Re ~ 50,000
- •Need to model turbulent energy transfer

#### Physics modeling

 Conjugate heat transfer with incompressible single phase N-S equations

•Treat fuel, gap, and cladding as material with known  $\alpha = \alpha(T)$ 

•Mesh wire wrap, gap, cladding, and pin positions

•Inflow and outflow bc's

• Non-linear heat transfer problem: Iterate source computation until convergence Discovery of new physics using more science-based simulation: "virtual experiments"



- Transition to turbulence with inflow/outflow boundary conditions in 7-pin x 3H configuration occurs at z ~ H/2:
  - use of periodic BCs is warranted,
  - significant savings (10 x)
  - to be verified for larger pin counts (edge effects)

# Key parameters in T-H modeling

## Multiscale simulation hierarchy involving:

- 1. Experiments
- DNS (direct numerical simulation of turbulence)
  ~50 M pt/channel (e.g., in subassembly simulation)
- LES (large eddy simulation)
  ~5 M pts/channel
- RANS (Reynolds-averaged Navier-Stokes) ~20,000 pts/channel
- Subchannel or lumped-parameter models ~150 pts/channel

#### Multiscale approach provides an important validation path:

• In the past, only Options 1 and 5 were available.

Increased Costs

### **State of the practice**

Several recent studies addressing issues related to applying CFD to reactor analysis (including fast reactors)

- ECORA Project: "Evaluation of Computational Fluid Dynamics for Reactor Safety Analysis"
  - CFX, Fluent, Saturne, STAR-CD and Trio\_U
- NEA/CSNI report "Best Practice Guidelines for the Use of CFD in Nuclear Reactor Safety Applications"
- ASCHLIM Project: "Assessment of Computational Fluid Dynamics Codes for Heavy Liquid Metals"

### **Broad conclusions**

Use of CFD codes is recommended if there are important 3-D aspects of the systems thermal-hydraulics that need to be resolved at smaller scales than can be handled by standard system and containment

- For foreseeable future CFD will be confined to specific isolated phenomena and sub-regions
- Typical instances for reactor safety problems include e.g.
  - flow-induced vibration of structures
  - erosion of surfaces
  - mixing and stratification
  - heterogeneous flow situations
  - Sodium fires
  - Effect of fuel rod displacement on temperature profile
  - Sodium/water chemical reactor Induced by steam generator tube rupture
  - Thermal striping in T-junctions, upper plenum

## **Broad conclusions, cont.**

Most of value of CFD analysis will be derived from coupling to traditional system analysis codes to address very specific local problems.

- "Modeling of Thermal Stratification in Sodium Fast Reactor Outlet Plenums During Loss of Flow Transients", T. H. Fanning and T. Sofu
- "Evaluation on natural circulation behavior of the 4S by integrated analytical models", A.Matsuda, H.Watanabe, J.Ohno
- Thermal-Hydraulic Calculation for Simplified Fuel Assembly of Super Fast Reactor Using Two-Fluid Model Analysis Code ACE-3D", T. Nakatsuka, T. Misawa, H. Yoshida and K. Takase
- "Development of computational method for predicting vortex cavitation in the reactor vessel of JSFR", Hamada et al
- Nature of coupling (on vs. two-way) can complicate analysis
- Weak coupling to derive bulk parameters for sub-channel models
  - "LES of Cross-Channel Mixing in Wire-Wrapped Subassemblies", Fischer

#### Modeling limitations that must be addressed

- Gas bubble two phase flows
- Free-surface flows
- Temperature gradients and related buoyancy flows:
  - Turbulent liquid metal heat transfer along a heated rod within an annular cavity, R. Stieglitz, A. Batta, J. Zeininger
- Subgrid modeling issues for low-Pr flows
- Sensitivity of solution to complicated gridding/numerical issues.



*"RANS Simulations of Turbulent Diffusion in Wire-Wrapped Sodium Fast Reactor Fuel Assemblies",* Pointer *et al* 

"Direct simulation of a passive scalar flow in a Turbulent swept flow over a wire in a channel", Pantano et al

## Validation

- Validation: Concerns attempts to build and quantify level of confidence in code predictions
- Should not be thought of as a binary "yes" or "no" decision.
  - Interpretation is problem-specific and depends heavily on intended use of code
- Takes place subsequent to *verification*
- More than sensitivity analysis for uncertain input parameters
- For science-based codes e.g. verification likely more critical
- No one-size-fits all: neutronics, T-H, and fuels modeling all treated differently
- Tiered approach: Complete system; subsystem, benchmarks, unit cases







- *"Validation of fast reactor thermo-mechanical and thermo-hydraulic codes"* IAEA-TECDOC-1318, p. 13, November 2002.
  - First determine range of damaging frequencies for given wall thickness
  - Duration of simulation should be deduced from the lower bound of the range; transient duration should cover at least 10 periods of this low frequency
  - LES is recommended, requiring O[2] discretization schemes
  - Time step must resolve oscillations at higher bound of damaging frequencies
  - Boundary conditions should include possible secondary flows (e.g. swirl flow) and lowfrequency variations of temperature and/or velocity
  - Boundary condition sensitivity analyses are critical
  - Care must be given to the transient behaviour of the computational mesh adjacent to the wall in association with a transient heat transfer coefficient with induced filtering of high frequencies.



## **Neutronics**

- Methods improvements need to be guided by solution to real problems
- Good example: negative Reactivity Transients of PHENIX
  - Four unexpected scrams occurred in 1989 1990 due to short negative reactivity transients (200 ms) with the same signal shape
  - Several potential explanations were given, but not satisfactory
  - Experiments are planned for PHENIX end-of-life tests for further investigation







## **Status of Deterministic Design Analysis Tools**

- Current tools are judged to be adequate to begin the ABR design process
- However, based on various approximations and sophisticated multi-step procedures
  - Average parameters for whole-core calculations are determined by a series of sub-domain calculations with increased modeling details and approximate boundary conditions
  - Detailed information is approximately recovered by reconstruction (de-homogenization) method



## **Status of Deterministic Design Analysis Tools**

#### Improved accuracy is needed to meet burner design challenges

- Radial blanket is typically replaced by reflector
- High leakage configurations also challenge design methods
- Improved pin power and flux distributions

#### Applicable range of problems needs to be extended

- Possibly different assembly geometry (e.g., grid spacer for low CR core)
- Modeling of structure deformation (for accurate reactivity feedback)
- Neutron streaming in voided coolant condition
- Control assembly worth (relatively large heterogeneity effects)





Assembly design concepts of JSFR

## **Status of Monte Carlo Codes**

Monte Carlo method can represent these details geometric complexity and complicated energy dependence of nuclear data

- Need sufficiently low uncertainty, reliable variance estimates and uncertainty propagation
- Fission source convergence
- Error prediction accuracy
- Computing resource requirements still remain unmanageable for many types of routine design analyses, including
  - Accurate estimation of local reaction rates
  - Effects of small perturbations,
  - Transients analysis
  - Error propagation via depletion
  - Thermal feedbacks
- Thus, the current design tools heavily rely on deterministic methods
  - Monte Carlo methods are typically used for steady-state reference solution

## **Benefits of Advanced Simulation Tools**

A modern, integrated design tool is crucial to improve the current design procedure, which is time-consuming and inefficient

- Eliminate piecemeal nature vulnerable to shortcomings in human performance, organizational skills, and project management
  - Improved automation of data transfers among codes/modules
- Greatly improve the turn-around time for design iterations
- Utilize advances in computer science and software engineering

# Improved modeling in the integrated design tool would allow radical improvements

- Reduced reliance on costly experiments
  - Integral mockup experiments
  - Thermal-hydraulic experiments to derive correlations
- Remove unnecessarily conservative design margins
- Ability to optimize the design (e.g., reduce nominal peak temperatures)
- New knowledge to alter and redirect the design features and approach

## Conclusions

Increasing interest internationally in advanced simulation reactor design/safety

Much of this is enabled by HPC

- Science-based methods range tremendously from speculative to nearly mature
- Most critical aspect of approach is to define project with clear goals, metrics for success, and