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Fast Reactor Modeling and Simulation Challenges
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— Local reactivity effects impact entire core
Energy (eV)

High leakage and heterogeneous core configurations challenge
design methods
— Transport effects are magnified
— Spectral and directional transitions at the core and reflector interface
are hard to model
— Core reactivity is sensitive to minor geometric changes

e Integration with thermal-hydraulics and structural mechanics
analyses to account for reactivity feedbacks due to geometry
deformation accurately




The existing approach: Homogenized assembly
— Vast reduction of space-angle-energy dofs
— Focused on producing the global gradient
— Reconstruct: local and global solution must be merged

Explicit geometry core calculations?
— >10'° degrees of freedom requires some parallelism
— Few large problems have been attempted

Can we improve the existing calculation accuracy?

— Not really concerned about depletion in short term
e Errorsin cross section data? Multi-group processing?

— Material loading uncertainties
e Are we solving a contrived problem; i.e. predicting the weather?
e Not the case for ZPR and other similar benchmarks. Production reactors?

Safety analysis was identified as one area of weakness that can be improved
— Radial thermal expansion is generally treated poorly in neutronics
— Above core mixing (thermal induced stress) is poor in CFD

— Modeling of seismic event impacts on core and plant?

Considerable development lead time before significant results can be achieved




Status of UNIC Code Development

= “Allow the existing reactor analysis work to transition smoothly from
assembly level homogenization to less crude homogenization and

eventually to fully heterogeneous descriptions”
Homogenized

— Diffusion theory structured geometry solver (NODAL) assembly

» Reproduce nodal diffusion capability in existing tools
» Can be extended to 1% order Sy or VARIANT
— Even-parity transport equation with spherical harmonics (PN2ND)

» Immediate use on problems with significant homogenization Homogenized
— Method of Characteristics (MOCFE) assembly ntemals
* Long term deployment and use on problems without homogenization : :

— Even-parity transport equation with discrete ordinate (SN2ND)
* Modeling transition region between PN2ND and MOCFE solvers

o Still has the second-order limitations (voids?) H°:;r‘:i‘:'l'liszed
» We still prefer to homogenize similar regions
* MC2-3 module for in-line multi-group cross section generation
— Hyperfine (~400,000) group transport capability for homogeneous
mixture and 1-D slab and cylindrical geometries. Started 2-D work.

Fully explicit
assembly



Parallelism in UNIC

= Novel?
— Parallel transport studied for well over a decade
 LANL, Sandia, French, Japanese,...
— Production tools?
» Unstructured mesh capabilities?
 Parallel capabilities?

= [ essons learned at ANL

— Parallelization in space-angle-energy is necessary I ;
— There are small, medium, and large parallel machines a2
» Spatial domain decomposition is not best for all ST e T

* Angle decomposition for Sy is generally good up to a limit
* We have not studied energy decomposition at this point
— Focused parallelization of L is not necessarily best idea ar / Jaar /) sar S 5.4l
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= (Capabilities

— PN2ND: 500-3,000 processors (2007)
— SN2ND: 1,000-300,000+ processors
— MOCFE and NODAL: unknown




Existing Approach (Assembly Homogenization)

» Typical approach used in fast reactor physics today

— VARIANT residual error 1s due to Py, order and source approximation

« Used 4" order source, 8" order flux, and 3 order leakage

— PN2ND residual error is due to Py order and spatial mesh refinement

o Used 109,740 hexahedral elements with 461,219 vertices

— SN2ND residual error is due to spatial mesh refinement
» Used Carlson even-moment (level symmetric) cubature

Eigenvalue error (pcm)

ABTR 33 group (120 periodic)

ﬁ._tlgular VARIANT | PHZND | SMZND
F.esolution
1 -1554 -15594 -192
2 -237 -2449 -1
3 -91 -10% A%
4 47 il 47
4 -55 -51




Assembly Level Homogenization (cont...)

*  VARIANT can easily out perform PN2ND and SN2ND

— Uses hybrid finite element (nodal) combined with spherical harmonics
» Spatial approximation includes discontinuities in even- and odd-parity flux
* Defines much fewer degrees of freedom in assembly homogenized problems
— Not currently ideal for all problems
* 1/6 hexagonal ABTR with 230G, P;-S; requires 14 hours of cpu time (5:108 dofs)
» ZPR drawer homogenized problems have convergence problems
* Cannot treat void or pure scattering regions

= PN2ND uses UFE combined with spherical harmonics

— Even-parity unstructured mesh treatment assumes continuous even-parity flux
* Requires careful boundary layer meshing (key weakness of method)
* Increased memory storage relative to VARIANT and bandwidth limited flop rate
— Uses a parallel CG operation on the WG space-angle system
* Preconditioner is just diagonal angular sub-system
» Use SSOR in parallel CG solver from PETSc on each angular sub-system

= SN2ND uses UFE combined with discrete ordinates
— Mesh related problems are identical to PN2ND

— Uses a scattering source iteration on WG space-angle system (CG on L)

» Uses diagonal angular sub-system preconditioner
* Uses SSOR via parallel CG solver in PETSc
» Started development of multi-level h multi-grid preconditioner




ZPR6 Assembly 6A

Single ZPR6 Drawer
Plate by Plate ZPR6 Geometry

* Over a period of 30 years, more than a hundred ZPR critical assemblies were constructed
at Argonne National Laboratory: ZPR-3, ZPR-6, ZPR-9 and ZPPR.

« The geometrical information for selected loadings is now widely available (ICSBEP)

« Materials are very well known compared with existing production reactors.

» In addition to experimental validation we can compare with CE MCNP/VIM solutions

* No concerns for multi-physics coupling
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Standard Homogenized Approach

Used 1-D “equivalent” lattice cell calculation to generate cross sections in MC2-3
— Homogeneous solution only gives the global gradient
— Done to capture foil reaction rates and compare other reactor physics parameters
— Need to combine global gradient with lattice cell calculation to extract solution
Reference solution is experiment (i.e. critical)
— SN2ND: 0.99966 VIM: CE 0.99981=£0.00025

— Ignoring plate heterogeneity
e SN2ND:0.99344 VIM CE: 0.99400%0.00020

We have obtained similar results on ZPR 6/7 and ZPPR-15
We are focused on using 2-D MOC for future cross section generation

Geometry Power on a Log Scale



Exact Geometry

Plate-by-Plate ZPR6 Assembly 6A

= SN2ND cannot handle explicit voids
— Not really an issue for this problem
— Development: 2-108 — +50-108 vertex mesh
— 33 group calculation requires ~40 minutes on full
parallel machine (~700 billion dof)
» Cross sections generated with 1-D lattice cell

— The implementation of these cross sections in the
explicit geometry model is not consistent.

— The cross section data representation is inaccurate Niatrix Tube + Gap
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\ |
Plate by Plate ZPR-6 Assembly 6A, cont...
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= Maximum of 116 group with P, scattering (9, 33, 70, 116)
= Maximum 50,000,000 vertex mesh (cubic hexahedrons)
= Maximum S,g, (LT or DLT)

Just EU plates



Flux Solution for ZPR6 Assembly 6A Experiments
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SN2ND Parallel Performance
= Strong spatial scaling of 94% on BlueGene/P-ANL

Total | Vertices/ | Total Time | Parallel Mainly measurement
o of PETSc
Cores | Process | (seconds) | Efficiency

8,192 7,324 2,402 100% Strong scaling
16,384 3,662 1,312 92% in angle is <75%
24,576 2,441 873 92% Diffusion equation needs
32,768 1,831 637 94% further partitioning

» Weak angle scaling of 75% on XT5. 76% on BlueGene/P 294,912 cores JSC

Total Total Time | Weak
Cores Angles (seconds) | Scaling Weak scaling

in space means mesh

16,512 1891 100%
refinement for us
37,152 72 1901 99%

66,048 128 1829 103% This can be good and bad.
103200 200 2050 92% Refinement of bad aspect ratio
: elements produced >95%
148,608 288 2298 82%
222,912 432 2517 75%

A
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Lessons Learned from ZPR

= Cross sections are not sufficiently accurate
— 1-D model is appropriate and proves to be accurate for drawer
average cross sections

— Equivalence theory used to generate self-shielded ultrafine group
cross sections is approximate
e A hyperfine group (i.e., pointwise) calculation can help
— Plate-by-plate cross sections may reduce the error, but the
fundamental issue is that the global gradient is not seen in the cell
lattice problem (either 1-D slab or 2-D MOC)

=  New approach: Improve accuracy of legacy methodology
— Incorporate global and local gradients via a 2-D MOC solution

e Generate drawer homogenized cross sections Flux at 243 keV

— Use SN2ND or improved VARIANT to solve global homogenized

I
oroblem on Log Scale

Top is ~lattice calc.

= With new capability we will research using plate-dependent Bottom is real world

cross sections in the radial plane
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The Future for Fast Reactor Cross Sections?
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MOCFE continued

= New version is >10 times faster than old version

= Validated “accuracy” on C5G7, CANDU, ABTR geometries
= Working on PWR, BWR, VHTR, and ZPR geometries

= Haven’t tested out any parallel options

= Haven't tested out the Krylov solver options

=  Have no clue how well it compares to other MOC solvers
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Future Work and Key Issues

= SN2ND
— Implement multi-level h-multigrid preconditioner scheme
— Implement error estimator for intelligent mesh refinement and accuracy assessment
— Investigate parallel decomposition of energy with Krylov subspace methodology
» Even with ~300,000 cores, direct whole core transport calculations are not practical yet

= (Cross Section Generation
— Optimize MC?-3 code for speed and investigate parallel execution of work
— Fully validate 1-D, 2-D, and 3-D MOCFE for parallel execution of space-angle-energy
— Investigate option to use localized hyperfine-group spectrum calculation with fine-group whole
core transport calculation
= “Intermediate” fidelity methods to perform routine design calculations (<<1000 processors)

— 2D MOC calculation for cross section generation

* New homogenization and group collapsing schemes
— PN2ND or SN2ND calculation with homogenized pin-cell

— Improved NODAL based code with assembly homogenization
* s there a potential for 2D/1D coupled schemes like DeCART?



