

Restoration work for obstacle and upper core structure in reactor vesse of experimental fast reactor Joyo

December . 7th , 2009

Fakashi SEKINE, Takashi ASHIDA, Kazuyuki IMAIZUM Misao TAKAMATSU, Akinori NAGAI, Yukimoto MAED

Japan Atomic Energy Agency (JAEA)

Table of Contents

- Outline of incident and instrumented type irradiation device "MARICO-2"
- Visual observations in Joyo reactor vessel
- Plan of restoration work
 - Replace Upper Core Structure (UCS)
 - Retrieve MARICO-2 from in-vessel storage rack
- Summary

Outline of the incident

- The test subassembly wasn't disconnected from the holding mechanism.
- Test subassembly was bent on the in-vessel storage rack.

In-vessel visual inspection

In-vessel visual inspection by fiberscope

Results of observation by fiberscope

- Clear images were obtained by radiation resistant fiberscope.
- Grasp the condition of the bent MARICO-2.

In-vessel visual observation by camera - Bent MARICO-2 on in-vessel storage rack -

In-vessel visual observation by camera

- Top of the subassemblies and in-vessel storage rack-

 No injuries to each handling head of subassembly and in-vessel storage rack

Visual inspection device for UCS bottom

Results of UCS bottom observation

Handling head connected with holding mechanism

Deformed regulating grid 10

Replace UCS and retrieve MARICO-2 test S/A

Technical subjects and measures

- (1) Shielding design of the UCS cask
 - \Rightarrow Activation of the UCS was evaluated based on the result of gamma dose rate measurement in the reactor vessel.
 - \Rightarrow Optimize the shielding design.

(2) Prevent impurity ingress to the sodium system

- \Rightarrow Control of the cover gas pressure, impurity concentration monitoring etc.
- \Rightarrow Experience of cooling system renovation in MK-III modification work.

(3) Sodium deposition between the UCS and small rotating-plug

- \Rightarrow Amount of sodium deposition is evaluated from experimental data.
- \Rightarrow Sodium deposition is shared by twisting and lifting the UCS.

(4) MARICO-2 retrieval method

 \Rightarrow Lifting test of bent MARICO-2 to confirm the condition of the MARICO-2 and transfer pot.

(5) In-vessel observation device for long continuous investigation

 \Rightarrow High radiation resistant fiberscope, periscope and lighting device

Measurement of gamma dose rate

- Detector insertion position-

Measurement of gamma dose rate

- Axial distribution -

Measurement of gamma dose rate

- Evaluated dose rate on the UCS-

Lifting test of bent MARICO-2

To confirm the condition of the bent MARICO-2 and transfer pot, the bent MARICO-2 was gripped by a simple handling device and was lifted up 40 mm.

Summary

- In-vessel visual inspections were successfully conducted by the fiberscope and the camera. These results are reflected in the restoration work of Joyo.
- The detail design of the shielding cask and the retrieving device of the bent MARICO-2 are now energetically pushed forward based on the evaluated activation of the UCS and lifting test of bent MARICO-2.
- Valuable experience and data will be obtained through restoration work.