BEHAVIOUR AND MONITORING OF NON-METALLIC IMPURITIES IN LIQUID SODIUM

Rajesh Ganesan, <u>V. Jayaraman</u>, S. Rajan Babu, R. Sridharan and T. Gnanasekaran

Liquid Metals and Structural Chemistry Division Chemistry Group Indira Gandhi Centre for Atomic Research Kalpakkam 603 102, INDIA

Outline

> Hydrogen sensor

In-sodium

Argon cover gas

Carbon sensor

> Oxygen sensor

Electrochemical Hydrogen Sensor for in-sodium applications

 $\begin{array}{l} [H]_{Na} \rightarrow leak \ at \ its \ inception \\ [H]_{Na} \uparrow \ \thicksim \ 10s \ ppb \rightarrow resolution \end{array}$

Conventional Sensors

- **Sputter-ion based**
- **₩** QMS based
- **Expensive**
- Bulky
- Frequent calibration

Development of electrochemical hydrogen sensors

[H]_{Na} // Electrolyte//
$$(p_{H2})^{ref}$$

E = RT/2F ln $(p_{H_2}(sample)/p_{H_2}(ref))$

Electrolyte system conforming to

$$\sigma_{\text{H-}}$$
 & stability P_{H_2} = 0.05 – 5 Pa \rightarrow 723K

Search for new electrolytes with high σ_i , t_i

Wittingham and co-workers reported (early 70s) use of CaCl₂ and CaHCl for this application

- Only alkaline earth hydrides and halide systems expected to be stable under operating conditions ⇒ (Ca,Sr,Ba)HX hydride ion conducting
- Alkaline earth bromides and lithium halides have low melting points \Rightarrow

```
Systems studied - DSC, \sigma and t_i
```

LiCl-CaCl₂, LiBr-SrBr₂, CaBr₂-CaHBr, SrBr₂-SrH₂, CaCl₂-CaHCl-LiCl

A mixture of CaO, CaH₂, MgO & Mg \rightarrow First time used as reference electrode

Facilitates casting electrolyte at high temperature

(R.Sridharan, K.H.Mahendran, S.Nagaraj, T.Gnanasekaran & G.Periaswami, J. Nucl. Mater. 312 (2003) 10)

5

Schematic diagram of ECHM sensor with the pre-amplifier

(Kitheri Joseph, K. Sujatha, S. Nagaraj, K.H. Mahendran, R. Sridharan, G.Periaswami, T. Gnanasekaran, J. Nucl. Mater. 344 (2005) 285)

Performance evaluation in lab

Output of electrochemical hydrogen meter as a function of hydrogen concentration in liquid sodium

No drift < 50 ppb

ECHM display unit

Response of ECHM to hydrogen and steam injections in large sodium facilities

Response (volt) of the sensor to hydrogen injection in Steam Generator Test Facility

Sensor response to steam injection in Sodium Water Reaction Test Facility

Response of ECHM to hydrogen in FBTR

Several years of successful operation

- ECHM response to changes in hydrogen level is instantaneous & reproducible
- Noise in ECHM signal is ±1 ppb at 50 ppb (±2% of background level)

Incorporation in PFBR 9

ECHM installed in Phenix Reactor, France in October 2007

➤ Unlike the conventional sensors which require frequent calibration at the plant, this electrochemical sensor needs one time calibration in the laboratory before installing in sodium circuits.

➤ These are quite inexpensive, compact and maintenance free compared to the classical sensors

(JPh. Jeannot, T. Gnanasekaran, C. Latge, R. Sridharan, L. Martin, R. Ganesan, JM. Augem, JL. Courouau, G. Gobillot ANIMMA International conference,7-10 June (2009) Marseille, France)

Hydrogen sensor for argon cover gas

Source of hydrogen

~ 580°C

Na + H₂O \rightarrow NaOH + $\frac{1}{2}$ H₂ Start-up of reactor (T_{Na} ~ 250°C) Low power operation

 H_2 escapes to cover gas \rightarrow steam leak detection

Steam Generator

Nickel Coil Assembly

Schematics of nickel coil assembly after incorporation in cover gas stream (FBTR)

Scheme Ni coil - TCD

Schematics of hydrogen detection system for argon cover gas

Calibration of nickel coil assemblies (T = 773 K) for different concentrations of H_2

(K.H. Mahendran, R. Sridharan, T. Gnanasekaran & G. Periaswami, Ind. Eng. Chem. Res. 37(1998) 1398)

13

Performance in FBTR and other facilities

Baseline stability of TCD response

Response of CGHM to H₂injection at SGTF

Modifications made to improve its performance

Elimination of mass flow controller

Fine metering valve

Micro controller based control unit designed and fabricated

temperature dependency of the signal voltage to vppm output frequency transmission

Noise = +/- 2 vppm

MDL = 12 vppm

Integration in PFBR ¹⁴

Hydrogen Sensor for cover gas monitoring (1-80 vppm)

Sensors tested in-tandem with TCD based system

Sensor's response to 2 to 80 ppm of H₂

Baseline stability for 6 months

Sensor module with gas manifold and built-in pre-amplifier

16

Electrochemical Carbon Sensor for in-sodium applications

Source of Carbon

- Shaft cooling by hydrocarbon oils
- Oil leak can lead to cracking and increase of carbon activity in sodium

Cell Configuration

Application

Carbon potential of sodium measured in dynamic system. Speciation of carbon in sodium done.

<u>Electrochemical Reactions in molten carbonate melt</u>

Modified procedure for sensor assembly evolved and implemented

Response of ECCM to temperature

- ➡ Foil used Nickel 100µm
- Equilibration temperature 650°C
 - Equilibration period 360 h

Functional

FBTR - 12 Years BIM - 1 Year

21

Correlation of emf output with the species present in sodium

Chronoamperometric studies → Diffusion of carbon through iron dictates the response

Yttria Doped Thoria (YDT) based Oxygen Sensor for liquid sodium

Source of oxygen

Steam leak Sorbed moisture

Electrochemical concentration cell W, $In/In_2O_3 | YDT | [O]_{Na}$

Requirements (for use in liquid sodium)

High density YDT bodies Better mechanical strength Helium leak rate $\leq 10^{-9}$ std. I / s

Conventional Method high sintering temperatures

Poor mechanical strengths (Unpredictable life-time)

Novel Combustion Synthesis

Scaled-up operation for device fabrication

~ 3 kg of electrolytic grade nanocrystalline YDT powders prepared

Condition	Sintering Temp. (K)	Theoretical density (%TD)	Helium leak rate (std.l/s)	
YDT (no binder& sintering aid)	1798, 1873 & 1923	< 90	>10 ⁻⁶	Fractured
YDT (PVA binder)	1798, 1873 & 1923	<90	>10 -6	<u>1 μm</u>
YDT (ZnO as sintering aid)	1798 & 1873	<90	>10 ⁻⁶	Surface
YDT (ZnO as sintering aid)	1923	94 – 98	∼10 ⁻⁹ - 10 ⁻¹⁰ —	- 2 <u>ши</u>

Sintering Studies

(V. Jayaraman, D. Krishnamurthy, Rajesh Ganesan, A. Thiruvengadasami, R. Sudha, M.V.R. Prasad and T. Gnanasekaran, Ionics 13 (2007) 299 – 303)

Compatibility Studies in Sodium

YDT sample (sintered at 1923 K) retrieved after equilibration in liquid sodium for 1000 h at 773 K

compatible in liquid sodium !!

EMF output from cell of configuration Pt, Ni/NiO|YDT|Fe/FeO, Pt as a function of temperature and its comparison with theoretical output ²⁸

Fabrication of Sensor

Proposed Scheme

- Optimization of machining thimbles and sintering to high density #
- Preparation of suitable glass solder and FERNI alloy
- Optimization of soldering FERNI alloy with YDT thimbles #

Assembly of Sensor

FERNI portion after welding with SS pipe

Glass-soldered YDT thimble with FERNI

A view of complete sensor assembly

Sensor assembled and under testing in liquid sodium W, $In/In_2O_3 \mid YDT \mid [O]_{Na}$, SS

Conclusions

In-sodium applications

Electrochemical hydrogen sensor

Tested in large sodium facilities & FBTR Implementation in PFBR

Electrochemical carbon sensor

Tested in large sodium facilities & FBTR

Electrochemical oxygen sensor

Tests in lab in progress Tests in large sodium facilities planned

Argon cover gas applications

✤ TCD based sensor system

Tested in large sodium facilities & FBTR Implementation in PFBR

Semiconducting oxide based sensor system
Tested in large sodium facilities

31

Contributors

Dr. C.K. Mathews, Former Director, CG Dr. G. Periaswami, Former Head, MCD

P.C. Clinsha K.I. Gnanasekar Kitheri Joseph D. Krishnamurthy K.H. Mahendran Manjulata Sahu T. Muthu Ambika S. Nagaraj E. Prabhu P.R. Reshmi K. Sujatha Sajal Ghosh A. Sree Rama Murthy C.V. Vishnu Vardhan

Acknowledgements

Director, IGCAR

Colleagues – Fast Reactor Tech. Group, Reactor Oper. & Main. Group & Reactor Engg. Group

Colleagues from CEA, France

JPh. Jeannot, C. Latge, R.L. Martin, J-M. Augem, JL. Courouau, G. Gobillot

Several M.Sc., M.Tech. and M.Phil Students

Colleagues from Chemical Facilities Division of Chemistry Group₃₂