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The first build

EBR 1
(USA, Idaho)

� 1951 : the first fast neutron reactor 
and the first nuclear electricity production

1950s : Nuclear Electricity

« EBR 1 lits Arco »
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The CREYS MALVILLE NPP
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The History of Fast Reactors
• Fermi: The vision to close the fuel cycle

• 50’s: First electricity generating reactor: EBR-I

• 60-70s: Expected Uranium scarcity – significant Fast Reactor programs

• 80’s: Decline of nuclear – Uranium plentiful

→ USA (& others): once through cycle & repository
→ France, Japan (& others): closed fuel cycles to solve waste     

issue

• Late 90’s : Rebirth of closed cycle research and development for improved 
in the US waste management

• Now: Long term energy security and the role of nuclear
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The Generation IV International Forum
4th Generation Nuclear Systems for
sustainable energy development

E.U.

ChinaChina

RussiaRussia

– Technical maturity around 2030

– Steady progress
• Economic Competitiveness
• Safety and reliability

– Significant progress :
• Waste minimisation
• Resource saving
• Security : non proliferation, physical protection

– Opening to other applications :
• High temperature heat for industry
• Hydrogen, drinking water
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A Global Solution

-Fast Neutron Reactors

-Closed Fuel Cycle,

-Full Recycling of the Actinides 

Uranium Supply will no more be a problem
whatever its price
The existing depleted uranium that is stored today in France is 
worth 5000 years of the country current nuclear production.
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The Fuel Cycle of 4th Generation Reactors
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� Resource Saving
� Waste Minimisation
� Proliferation Resistance

Various Options to be tested by the Prototypes :  
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Superphenix (Creys-Malville)

Superphenix and the EFR project

Superphenix:
Industrial prototype (1200 MWe),

started in 1985,
shutdown in 1998

EFR Project 
(European Fast Reactor)

– 1500 MWe
– Integrated Concept
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EFR vs SPX1: Comparison of specific steel weight in t/kWe

EFR Economic evaluations (1998)
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Sodium = first 
choice

� High conductivity
� Liquid from 98°C to 

883°C (at 1 bar)
� Low viscosity
� Compatible with 

steels
� Industrial fluid
� Low cost

Lead is a 
variant

� No reactivity with 
air and water

� Good coolant

But reactive with air and 
water, and opaque

But corrosive, toxic, 
very dense, opaque 
(and solid…)

Helium is an 
alternative

� No temperature 
constraints

� No phase change
� Inert
� Transparent

But low density, high 
pressure

What coolant for fast neutron reactors?
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Primary
Containment

Intermediate
circuit 

(sodium)Pool Loop

Sodium coolant: the concepts
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SUPERPHENIX

PHENIX

The integrated concept
Phenix and Superphenix
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Very good operation
Extensive Feedback Experience: MOX fuel, 
closed cycle, technology (SG, IHX)
Demonstration of ISI and reparability
Transmutation of minor actinides
Closing down this year

Phenix
Phenix (Marcoule)
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The Russian Reactor BN 600

Beloyarsk Plant, 
600 MWe Reactor, integrated concept, sodium-cooled
Started in 1980, still operating
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PBFR (India)
500 MWe, 2010 

CEFR (China) 
65 MWth, 20 MWe 

2010 

Other Pool Type Reactors

BN600, 1980
BN800, 2012 

(Russia)
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SG-HX unit, 600 MW
Na/Pb-Bi/H2O
Φ~4m X h~11m

« Ultra-compact »
3-fluid component

(SG-HX)

(sodium / X / water)
IntermediateIntermediate circuit circuit 

designdesign

SG SG materialsmaterials
for T > 550°Cfor T > 550°C

Pressure Pressure 
choicechoice

Na X Rankine
cycle

Intermediate circuit
design

SG materials
for T° > 550°C 

Pressure
optimization

C
ore

Containment

Circulation
Pump

Feed Water
Pump

PHTS
Pump

�Gas cycle conversion (N2, supercritical CO2)
�Water/steam (Rankine cycle)
� Simplification of intermediate circuit and 
avoidance of sodium/water interaction

New Options for Energy Conversion
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Joyo (140 MWt)

Monju (280 MWe)

The Loop Concept

A Generation IV concept:
JSFR (en project, 1500 MWe, 2025)
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ODS cladding to achieve high 
burn-up with elevated 

temperature
Prevention of sodium 
chemical reactions

• Double-wall piping
• High reliable SG with double-
wall tube

Inspection and repair 
technology under sodium

Enhancement of 
reactor core safety

• Passive reactor shutdown system 
and decay heat removal by natural 
circulation 

• Recriticality free core

� 1,500 MWe large-scale Sodium Cooled FBR with MOX fuel, 
� Innovative technologies for reactor core safety enhancement,safety enhancement,safety enhancement,safety enhancement, high economic competitiveness and 

countermeasures against specific issues of sodium

Secondary 
pump

SG

Integrated IHX 
with primary Pump

Reactor Vessel

Innovative technologies to 
reduce plant materials and 
reactor building volume

•Two-loop cooling system
•Shortening of piping with high 
chromium steel
• Integrated Pump-IHX Component
•Compact reactor vessel

The JSFR Project

Economics Reliability

Safety
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metal, carbide/nitride or oxide ?

� Metal fuel was developed in the US (EBR2)
� MOX fuel feedback experience is the most extensive
� Carbide and nitride enable to increase the margins with 

respect to melting (gain in performances or in safety)

Liquid Metal Fast Reactor Fuel

Pu/(U+Pu) = 0.2 Carbide 
(U,Pu)C 

Nitride 
(U,Pu)N 

Oxide 
(U,Pu)O2 

Metal 
(U,Pu)Zr 

Heavy Atoms density 
(g/cm3) 

12.95 13.53 9.75 14 

Melting point (°C) 2420 2780 2750 1080 
Thermal conductivity 
(W/m/K) 

16.5 14.3 2.9 14 
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Swelling of advanced austenitic steels and ferrito-martensitic steels used as fuel cladding in Phenixcladdings compare to F/M materials
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Advanced fuel cladding: 316 Ti � 15-15 Ti � F/M ODS

- Large pin diameter 
- high burn up (dose > 200 dpa) � Cladding with no swelling

SUPERNOVA
(Phenix)

SFR V2
83.4% Dth

Large-diameter pins,
small-diameter spacing wire

Phenix
88% Dth

Cladding material
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Provisions for mitigating the core melting risk 
and, in the event of a core meltdown, 
for preventing high-energy accident sequences

Simulation of BTI* in Phénix
(SIMMER-III code) Passive devices for corium channeling (FAIDUS, Japan)

A strategy for severe accident management

*BTI: Total Instantaneous Blockage of a fuel assembly

Safety Studies
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Objectives :
� Gas : an alternative to liquid metals for fast reactors
� Power range 300 – 1200 MWe
� Outlet  temperature of helium ~ 850 °C

� Robust fuel
� Active + passive safety approaches
� Cogeneration electricity + hydrogen

GFR Steering
Committee

U.S.A.U.S.A.

JapanJapan

SwitzerlandSwitzerland

FranceFrance

South KoreaSouth Korea

South AfricaSouth Africa

EuratomEuratom
countriescountries

The GFR



23FR09 December 7th, 2009, Kyoto

The Gas Fast Reactor (GFR)

OBJECTIVES : To 
concentrate on main 
problems  (fuel and safety) 
in order to build in Europe, 
by the end of the next 
decade, a small 
experimental gas-cooled fast 
reactor (ALLEGRO)
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Choice of fuel for Gas Fast Reactors

0 25 50 75 100
%vol. of actinide compound in the volume reserved to the fuel

Plates with boxes, 
high density 

Advanced 
Particules

HTRs

RRG

Cladded 
pellets
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Confirmation of DHR system 
performance (LOCA) with CATHARE

Efficiency of DHR systems and control of fuel temperature < 1600°C
• 24 hr in forced convection (small pumping power ~ 10 kWe)
• For longer term, natural circulation at 1.0 MPa

Analysis of GFR fast depressurization accident
GFR 2400 MWt, back-up pressure 10 bars

200

400

600

800

1000

1200

1400

0 20000 40000 60000 80000 100000
time (s)

ma
xim

um
 fu

el 
tem

pe
rat

ur
e (

°C
)

Forced convection

24 h

GFR guard containment
(metallic sphere 33 m diameter)

+ gas injection tanks

Safety Studies
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Objectifs :

•• cc

� Power reactor of 1200 MWe
� Modular reactors of 300-400 MWe

� Coolant Pb or Pb-Bi
� Material resistant to corrosion by Pb at 550-800 °°°°C
� Fuel with actinides 

(metal or nitrate)
� Nuclear Battery 50-100 MWe –

cycle of 10-30 years

U.S.A.U.S.A.JapanJapan

South KoreaSouth Korea

The LFR

SwitzerlandSwitzerland

EuratomEuratom countriescountries RussiaRussia

Not yet signed
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The French ASTRID Prototype Project

*Technological 
Studies
*Choice of 
ASTRID Power

End of Pre-Conceptual Design

End of Conceptual 
Design

Decision to continue

2009       2010        2011        2012      2013      2014  2015       2016     2017     2018        2019     ~ 2020   
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The Need for
Harmonization and Coordination at

International Level

� Harmonization of different national prototype / experimental reactor construction projects:
�avoid duplication, seek complementarities

� Pooling of efforts, sharing of R&D tools / construction capabilities 
�optimisation of means

� Establishment of international safety standards, owing to the fact that safety and licensing 
are largely congruent among the international community
�reference regulatory practices and regulations
�international consensus on common (or compatible) high level safety philosophy

Conclusion


