International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21st Century

Vienna, Austria, 27-30 October 2009

Organized by the

In cooperation with:
EC Joint Research Centre (EC/JRC)
International Electrotechnical Commission (IEC
OECD Nuclear Energy Agency (OECD/NEA)
World Nuclear Association (WNA)

IAEA's Support of Water Cooled Reactors in the 21st Century and Beyond

27 October 2009

K. S. Kang, S. Bilbao y León, O. Glockler

Main Objectives of 2009 Conference

IAEA's Support of WCRs in the 21st Century and Beyond

Operating Reactor Excellence

- Global Trends
- Performance Improvement
- Nuclear Energy Series
- Operational Excellence

Technology Development for WCRs

- Global Trends
- Support to Technology Development
- Technology Training

Opportunities & Challenges

- TC Activities
- Opportunities and Challenges

Part 1. Global Trends in Nuclear Power

Long-term operation and power uprating

- Long term operation through continuous monitoring, replacement and regulatory review

Age distribution (327/436 over or equal to 20 years)

Key Successful Trends in Operating NPPs

- 1. Availability factor increase & reduction of unavailability
- 2. Power upratings:
 - US: 5,695MW(e), Europe :1,212
 MW(e), ~1% per year
- Licensed Life Extension :
 - US: 51 NPPs, 21 application in review
 - Argentina, Czech, France, Hungary, Japan, Korea, Netherlands, RF, Spain, Ukraine
- 4. High burn-up fuel
- 5. Success in liberalized markets

Plant Life Management for Long Term Operation of Light Water Reactors

Principles and guidelines

Installed Capacity Utilization

- Continuous increase during last 20 years,
 - Slowed down in recent years
- In 2007 the Energy Availability Factor (EAF) was 81% in average.
 - Half of nuclear reactors operated with EAF above 85%.
- In 1990s an average annual increment was 1% equivalent to construction of 4 new units every year

Unavailability Trends

Nuclear Energy Series

Publications supporting the diverse needs of MSs

Basic Structure for Operational Excellence

- Safety Guidelines
 - Periodic Safety Review
 - Ageing management
- Guidelines & Procedures for PLiM
 - Light Water Reactor
 - Heavy Water Reactor
- Integrity of System, Structure & Components
 - RPV, Safety related SSC
- Ageing Management
 - Programmatic Guidelines
 - Component specific Guidelines
 - Ageing management review guideline
- Maintenance and I&C systems
 - ISI, Reliability Centered Maintenance
 - I&C modernization
 - Condition Based Maintenance

Computer model for Eco. Assessment of PLiM

Construction of Knowledgebase

RPV Material DB
Con. Containment DB
SG DB
Piping DB

RPV Integrity under Irradiation Damage

Cu/P effect

Irradiation damage challenge

Dose rate effects

Decrease of USE

damage

Other
V, Mo, Cr, stress
cooling rate, etc.

Thermal/Irradiation (C-Mn Effect, Hardening vs non-hardening, etc.)

Coordinated Research Projects

After I&C Modernization (Oskarshamn 1 NPP)

Management System for Nuclear Facilities

IAEA Safety Standards

for protecting people and the environment

The Management System for Facilities and Activities

IAEA Safety Standards

for protecting people and the environment

Safety Required No. GS-R-3

Application of the Management System for Facilities and Activities

- Management of resources
- Process implementation
- Measurement, assessment & improvement

Part 2: Technology Development for Water Cooled Reactors

http://www.iaea.org/NuclearPower/Technology/WRC/

Projection of WCR Technology

Global Trends in WCR Technology

Cost Reduction

- Improving construction methods to shorten schedule
- Modularization and factory fabrication
- Standardization and series construction
- Economy of scale → larger reactors
- Design features for longer lifetime

Performance Improvement

- Establishment of user design requirements
- Development of highly reliable components and systems, including "smart" components
- Improving the technology base for reducing over-design
- Further development of PSA methods and databases to support
- Development of passive safety systems
- Improved corrosion resistant materials
- Development of computer based techniques
- Development of systems with higher thermal efficiency and expanded applications

Technical Descriptions of WCRs

- Development goals & safety objectives
- Evolutionary and innovative
- Electricity or co-generation
 - Descriptions each design:
 - Systems
 - Nuclear
 - Power conversion
 - 1&C
 - Electrical
 - Safety
 - Summary level technical data
 - Design measures to enhance economy and reliability

Under Development web-based Status Reports including all reactor lines

Support to Technology Development

Support to Near-Term Deployment

- Advanced Construction Technologies
- Modularization
- Technology Assessment
- Feasibility Studies
- Efficient Use of Water Resources

Technical Cooperation Activities in 2009~2011

- Enhancing Research Reactor Utilization and Safety (AFRA)
- Sustainable Energy Development and Preparation for Nuclear Power
- Introduction of Nuclear Power for Electricity Generation
- Developing and Implementing PLiM and PLeX Programmes in NPPs
- Establishing a Structural Integrity Assessment Procedure for NPP Components

Support to Newcomers in 2010 under Inter-regional TC Projects

- Promoting Technology Development and Application of Future Nuclear Energy Systems
 - Long-range Nuclear Programme Planning and Strategy Development (June, Vienna)
 - Project Management for New Nuclear Power Projects (May, Korea)
 - INPRO Dialogue Forum on Nuclear Energy Innovations (October, Vienna)

Main Achievements

Publications on Best Practices & Lessons Learned

New Opportunities & Challenges

- Maintaining efficient & safe operation of existing reactors and research facilities
 - Aged Nuclear Power Plans and Workforce
 - Decline of government support in some Member States
- Provide confidence on proliferation and security concerns
 - Avoid diversion or misuse of nuclear material
 - Technology development on evolutionary/innovative designs
- Harmonization of safety standards and regulatory requirements
 - Promote the deployment of internationally standardized reactor designs
- Facilitating continuous improvement of management system
 - Support of change management in deregulation and aging plant/personnel
 - Development of leadership and effective management skill
- Cost Uncertainty and Supply Chain
- Support the success of the nuclear renaissance and beyond
 - Advanced technologies and advanced materials
- Effective use of fissionable resources
 - Availability of uranium and minimization of spent fuel