

International Atomic Energy Agency

Grid, Industrial involvement and procurement

Akira OMOTO DIR, NENP

Characteristics of Nuclear Power Plant (1)

- ☐ Capital intensive but low fuel cost
 - Operator prefers large size unit operated in base load (not in frequency control/load regulation)
 - Regional interconnection of grids enables increased size NPP
- □ (R→G) Preference to large size. However, sudden disconnection of a large scale NPP from the grid (reactor trip/scram) creates serious <u>disturbance to the connected grid</u> (frequency change)
 - Reactor trip to secure nuclear safety by sensing (BWR case)
 - Low/High level of reactor water
 - High neutron flux
 - High containment pressure
 - Excessive flow in Steam line
 - Low vacuum in condenser
 - High radiation in reactor building
 - High acceleration (earthquake) etc.

Characteristics of Nuclear Power Plant (2)

- □ (R→G) Once disconnected from the grid, the reactor takes <u>time to resume</u> <u>power operation</u> (considering influence to fuel)
- □ (G→R) Reliability/quality of the grid influences transient/safety of NPP. In the case of frequency change//interruption/isolation from grid:
 - Frequency drop→ reduced coolant flow → change in reactivity.
 - ▶ Isolation → Reactor transient (power-coolant mismatch to fuel due to decrease of coolant flow by pump trip, reactor overpressure due to loss of steam exit to Turbine) and
 - ▶ Isolation → Potential safety issue (loss of power to safety systems etc.)
 Unless appropriate protection & control system in the NPP system design to prevent serious effect to reactor system are in place;
 - Automatic trip of reactor (reactor protection system)
 - Separation of plant electric system from the degraded grid
 - Reliance on DC battery
 - Emergency power source (DG, Gas Turbine)
 - Steam bypass system

In a relatively early stage of NP planning: Assessment of reliability/quality of grid and of the need to enhance it

- General guidance on grid/NPP interface in the IAEA document: "Interaction of Grid Characteristics with Design and Performance of Nuclear Power Plants: A Guidebook, Technical Reports Series No. 224" (1983)
- Assessment during the process of site selection (impact on economics from strengthening grid performance)
- Need collection of information on the characteristics of the current power system and their projection to the time NPP is built & operated (connection with other grids, load curve, stability, quality, availability of replacement power in case of outage, automatic load shedding etc)

☐ Phase I NEPIO to looks at:

- Existing grid and generating capacity in relation to the available NPP technology
- Anticipated future growth of grid capacity & potential for grid interconnections to improve grid characteristics
- Stability and reliability of the electrical grid

☐ Phase 2

Owner/Operator/Utility, based on detailed studies to determine the necessary expansion, upgrade or improvement, plan

- for grid enhancement and/or expansion
- ➢ for increase or strengthening regional interconnects to achieve acceptable grid reliability
- > for providing redundant, reliable sources of off site power for the NPP
- for funding & schedule for implementation (compatible w/NPP schedule)

☐ Phase 3 Utility to implement the plan established in phase 2

- Ensure coordination of grid operations (central grid operations) with NPP operations,
- Verify the completion of all upgrades and enhancements to the grid and interconnects
- ➤ Install and test the redundant off site power supplies to the NPP.

Industry involvement & Procurement

- Many commodities, components and services to construct, operate and maintain NPP
 - Opportunities for the growth of regional economy & stimulating science & technology
 - ➤ What happens if a component fails and the original manufacturer cannot provide replacement in a timely manner or is not in the market anymore?
- ☐ Owner/Operator, together with EPC company, to discuss
 - Supply chain including local participation for stable O&M
 - Potential for <u>localization</u> and/or strategic alliance with the original vendors (Some Owners Group coordinates the purchase of replacement and upgrades)
 - Qualification of local suppliers (Compliance with the codes and standards and under rigorous quality programmes)
 - Access to and handling of design information

Industry involvement: Phase 1

NEPIO to assess;

- National and local industrial capabilities,
- ➤ Interest of business / industrial leaders in participating in the NPP project considering the special requirements necessary,
- > Necessary investment for intended upgrading of industrial facilities

And develop

Short term and long term policies on the level of local participation

Industry involvement: Phase 2

In preparation of bid specification, **Owner/Operator/Utility** to consider;

- Which national or local suppliers can reliably supply commodities, components or services to nuclear related or non-nuclear portions of the NPP,
- ➤ What upgrades in skills and capabilities are realistic in a time frame to support nuclear construction,

And to determine;

Bid specification in accordance with those decisions.

Local manufacturer

Planned domestic industry involvement should be called out in the bid specification and will have to be negotiated with NPP supplier.

Industry involvement: Phase 3

Owner/Operator/Utility

- Reassessment of the sources of supply to support O&M
- ➤ If the national and local industrial structure has progressed sufficiently, the supply of spare parts, consumable supplies, maintenance services and services can be allocated accordingly

Local manufacturer

- > Necessary qualification
- Localization (technology transfer)

Procurement

Phase 1: NEPIO to

- Recognise the need for a procurement policy consistent with the industrial participation policy,
- Consider a strategy to assure the necessary expertise in Industry/Operator is developed in a timely manner

Phase 2: Owner/Operator/Utility to

- > Develop procurement programmes and procedures
- > Develop formal procurement specifications and vendor lists

Phase 3: Owner/Operator/Utility to

- Establish its own procurement organization with the programmes and skills necessary to conduct nuclear related purchasing of equipment and services
- Establish outsourcing policy and extent of own technical expertise in O&M stage

...Thank you for your attention