Feasibility Study of Pyrochemical Treatment on Fuel Debris by Performing U and Zr Electrochemistry in LiCl-KCl Molten Salt

Supathorn (Supy) Phongikaroon, Ph.D., P.E.
Associate Professor

International Experts Meeting on Strengthening Research and Development Effectiveness in the Light of the Accident at the Fukushima Daiichi Nuclear Power Plant
16–20 February 2015
Vienna, Austria
Outline

• Brief Background
• Motivation and Goal
• Experimental Program
• Basic Electrochemistry
• Results and Discussion
• Conclusion
Background

- In the light of the accident at the Fukushima Daiichi NPP,
 - 3 Phases existed for mid- and long-term plans

1st: 2 years 2nd: Next 10 years 3rd: In 30 – 40 years
FUEL REMOVAL FROM THE POOL REMOVAL OF FUEL DEBRIS REMOVED, PROCESSED, AND DISPOSED FUEL DEBRIS WITH PROPER WASTE MANAGEMENT

- Technical plans in various aspects:
 - Direction on recovery and treatment,
 - Characterization,
 - Conditions and long term performances, and
 - **Possibility of treatment path for toxicity reduction.**
Separation Methods

• Possible fuel debris treatments due to previous studies on debris samples in TMI-2.

• Aqueous and Pyrochemical separation methods
 – PUREX – dissolving in nitric acid and fluoric acid showing that neither 6 N HNO₃ nor 3 M HNO₃ + 1 M HF mixture could be used to dissolve the actual debris.

 – Japan Atomic Energy Agency (JAEA) and Central Research Institute of Electric Power Industry (CRIEPI) – advantage on pyrochemical treatment in term of solubility of debris and secondary waste volume through oxide reduction tests.
Motivation and Goal

• No fundamental experiment to further gain insight in reprocessing of the fuel debris after electrolytic oxide reduction step.

Motivation
Explore concentration effects on thermodynamic and electrochemical properties for U and Zr in LiCl-KCl molten salt system under common electrorefiner’s conditions.

Goal
Gain fundamental understanding and path forward in applying pyrochemical process in order to separate U and Zr efficiently.
a) Al₂O₃ sheathed thermocouple
b) Tungsten (99.95%) working electrode
c) Ag/AgCl (99.997%) reference electrode (5 mol%)
d) Glassy carbon counter electrode lead
e) Glassy carbon crucible/counter electrode
f) MgO secondary crucible
g) Eutectic LiCl-KCl (99.99%) containing dUCl₃ (75 wt%) or ZrCl₄ (99.95+%)
h) Kerrlab furnace
Experimental Equipment

- A quartz electrode assembly was used to position the electrodes and thermocouples at reproducible locations.
Data Collection

- All experiments were performed and all data was collected with a Princeton Applied Research VersaSTAT 4-400 potentiostat and VersaStudio software.

- The raw data was imported into Excel for further analysis.

- Following the electrochemical data collection, the working electrode was removed from the salt and the wetted length was measured to determine the active surface area.
Cyclic Voltammetry (CV)

- A common electrochemical technique that can be used to determine information about the reactions that occur in an electrochemical cell.
- Potential is repeatedly scanned from one vertex potential to another at a constant scan rate, ν.
- Reduction and oxidation reactions occur at the electrode surface resulting in cathodic (negative current) and anodic (positive current) peaks, respectively.
- Equilibrium potential
 \[E = \frac{E_{pa} + E_{pc}}{2} \]
From the resulting current, reaction information can be determined.

- **Reversible:** soluble/soluble
 - Randles-Sevcik equation
 \[
 I_{pc} = 0.4463nFAC \sqrt{\frac{nFD_{ox}}{RT}}
 \]
 - Apparent standard potential
 \[
 E = E^{0*} + \frac{RT}{nF} \ln \left(\sqrt{\frac{D_{red}}{D_{ox}}} \right)
 \]

- **Irreversible**
 - Electrons transferred (irreversible)
 \[
 |E_{pc} - E_{p/2}| = 1.857 \frac{RT}{n\alpha F}
 \]
 - Delahay equation (irreversible)
 \[
 I_{pc} = 0.4958nFAC \sqrt{\frac{n\alpha FD_{ox}}{RT}}
 \]
 - Peak Potential (irreversible)
 \[
 E_{pc} = E^{0*} - \frac{RT}{n\alpha F} \left[0.78 - \ln k_s + \ln \sqrt{\frac{n\alpha FvD_{ox}}{RT}} \right]
 \]

| A | Electrode surface area |
| C | Concentration |

| E_{p/2} | Half-peak potential |
| k_s | Standard rate constant |
Chronopotentiometry (CP)

- An current-controlled technique that can be used to study time-dependent concentration change in a solution.
- A large driving current, \(I_d \), is applied and the resulting potential is measured as a function of time.
 - To maintain the applied current, potential drops to a value at which ions of a given species are reduced.
 - When the ion is fully reduced at the electrode surface the potential further drops to reduce the next ion.
 - The time of this potential transition is the transition time, \(\tau \).

\[
I_d \sqrt{\tau} = \frac{nFAC\sqrt{\pi D_{\text{ox}}}}{2}
\]

Results: 1.0 wt% UCl$_3$ CV (773 K)

Scan Rate
- LiCl-KCl @ 200 mV/s
- 20 mV/s
- 50 mV/s
- 100 mV/s
- 150 mV/s
- 200 mV/s

Current Density, i (Amps/cm2)

Potential, E (V vs Ag/AgCl)

$U \rightarrow U^{3+} + 3e^-$

$U^{3+} \rightarrow U^{4+} + e^-$

$U^{4+} + e^- \rightarrow U^{3+}$

$U^{3+} + 3e^- \rightarrow U$
Results: 2.5 wt% UCl₃ CV (773 K)

Increasing applied current
Results: 1.07 wt% ZrCl$_4$ CVs at 723, 773, & 823 K

1.07 wt% Cyclic Voltammograms

$\nu = (300, 350)$ mV/s

Temperature

- Blue line: 723 K
- Red line: 773 K
- Green line: 823 K

Chemical reactions:

- $\text{Zr} \rightarrow \text{Zr}^{2+} + 2e^-$
- $\text{Zr} \rightarrow \text{Zr}^{4+} + 4e^-$
- $\text{Zr}^{2+} \rightarrow \text{Zr}^{4+} + 2e^-$
- $\text{Zr}^{4+} + 4e^- \rightarrow \text{Zr}$
- $\text{ZrCl} + e^- \rightarrow \text{Zr} + \text{Cl}^-$
- $\text{Zr}^{4+} + 2e^- \rightarrow \text{Zr}^{2+}$
- $\text{Zr}^{2+} + 2e^- \rightarrow \text{Zr}$
- $\text{Zr}^{4+} + 3e^- + \text{Cl}^- \rightarrow \text{ZrCl}$
Results: 0.497 wt% ZrCl$_4$ and 9.80 wt% UCl$_3$

- Uranium behavior dominates with low ZrCl$_4$ concentration.
- Very small contribution of Zr reactions.
Results: 4.17 wt% ZrCl$_4$ and 8.34 wt% UCl$_3$ CVs

ZrCl may not be fully reduced to Zr metal, leading to the ZrCl oxidation peak.

ZrCl → Zr$^{4+}$ + 3e$^-$ + Cl$^-$

U → U$^{3+}$ + 3e$^-$

Zr$^{4+}$ + 2e$^-$ → Zr$^{2+}$

U$^{3+}$ + 3e$^-$ → U

Zr$^{2+}$ + 2e$^-$ → Zr

Zr$^{4+}$ + 3e$^-$ + Cl$^-$ → ZrCl

U$^{3+}$ → U$^{4+}$ + e$^-$

Zr$^{2+}$ → Zr$^{4+}$ + 2e$^-$

U$^{4+}$ + e$^-$ → U$^{3+}$
Summary

- CV cathodic and anodic peaks were identified.

<table>
<thead>
<tr>
<th></th>
<th>Peak</th>
<th>Cathodic Reaction, Location</th>
<th>Anodic Reaction, Location</th>
<th>Reversibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>A</td>
<td>$U^{4+} + e^- \rightarrow U^{3+}, -0.5\ V$</td>
<td>$U^{3+} \rightarrow U^{4+} + e^-, -0.3\ V$</td>
<td>Reversible</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Adsorption $U^{3+}, -1.5\ V$</td>
<td>Desorption $U^{3+}, -0.7\ V$</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>$U^{3+} + 3e^- \rightarrow U, -1.6\ V$</td>
<td>$U \rightarrow U^{3+} + 3e^-, -1.4\ V$</td>
<td>Irreversible</td>
</tr>
<tr>
<td>Zr</td>
<td>A</td>
<td>$Zr^{4+} + 2e^- \rightarrow Zr^{2+}, -1.06\ V$</td>
<td>$Zr^{2+} \rightarrow Zr^{4+} + 2e^-, \text{shoulder near } B_a$</td>
<td>Irreversible</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>$Zr^{2+} + 2e^- \rightarrow Zr$ and $Zr^{4+} + 3e^- + Cl^- \rightarrow ZrCl, -1.5\ V$</td>
<td>$Zr \rightarrow Zr^{4+} + 4e^-$ and $Zr \rightarrow Zr^{2+} + 2e^-, -0.5\ V$</td>
<td>Irreversible</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>$ZrCl + e^- \rightarrow Zr + Cl^-$ and $Zr^{4+} + 4e^- \rightarrow Zr, -1.85\ V$</td>
<td>NONE</td>
<td>Irreversible</td>
</tr>
</tbody>
</table>
Summary

Apparent Standard Reduction Potential, E_0^* (V vs. Cl₂/Cl⁻)

Current Work
- Literature Values

773 K: U(IV)/U(III)
773 K: U(III)/U
723 K: Zr(IV)/Zr(II)
773 K: Zr(IV)/Zr(II)
823 K: Zr(IV)/Zr(II)
723 K: Zr(II)/Zr
773 K: Zr(II)/Zr
823 K: Zr(II)/Zr
Summary - Diffusion Coefficient

Diffusion Coefficient, D (cm2/s)

- **Current work**
- **Literature Values**

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Compound</th>
<th>Current work</th>
<th>Literature Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>773</td>
<td>UCl$_3$</td>
<td>1.0×10^{-7}</td>
<td></td>
</tr>
<tr>
<td>773</td>
<td>UCl$_4$</td>
<td>1.0×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>723</td>
<td>ZrCl$_4$</td>
<td>1.0×10^{-5}</td>
<td></td>
</tr>
<tr>
<td>773</td>
<td>ZrCl$_4$</td>
<td>1.0×10^{-4}</td>
<td></td>
</tr>
<tr>
<td>823</td>
<td>ZrCl$_4$</td>
<td>1.0×10^{-5}</td>
<td></td>
</tr>
<tr>
<td>723</td>
<td>ZrCl$_2$</td>
<td>1.0×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>773</td>
<td>ZrCl$_2$</td>
<td>1.0×10^{-5}</td>
<td></td>
</tr>
<tr>
<td>823</td>
<td>ZrCl$_2$</td>
<td>1.0×10^{-4}</td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgements

• This work was performed by University of Idaho as part of an International Nuclear Energy Research Initiative project (I-NERI 2010-001-K) with Idaho National Laboratory (INL), Seoul National University (SNU), and Korea Atomic Energy Research Institute (KAERI).

 – **Experimental conductor:** Dr. Robert Hoover
 – **Collaborators at INL:** Dr. Michael Simpson and Dr. Tae-Sic Yoo
 – **Collaborators at SNU:** Prof. Il-Soon Hwang, Jaeyeong Park, Sungyeol Choi
 – **Collaborators at KAERI:** Dr. Kwang-Rag Kim
List of References:

- Bourg, S. IEM on Decommissioning and Remediation (2012).
- Fujita, et al., NUPYRO 2012
Extra Slides
Cyclic Voltammetry of 0.5 wt% ZrCl$_4$, 10 wt% UCl$_3$, and a Mixture of 0.5 wt% ZrCl$_4$ and 10 wt% UCl$_3$ in LiCl-KCl at 773 K with 200 mV/S Scan Rate
Cyclic Voltammetry of 10 wt% UCl₃, and a Mixture of 0.5 wt% ZrCl₄ and 10 wt% UCl₃ with 2000 mV/s Scan Rate, 0.5 wt% ZrCl₄ with 500 mV/s Scan Rate (Hoover et al.), and a Mixture of 0.99 wt% ZrCl₄ and 0.79 wt% UCl₃ with 50 mV/S Scan Rate (Murakami et al.) in LiCl-KCl at 773 K
Cyclic Voltammetry of 0.5 wt% ZrCl$_4$, 10 wt% UCl$_3$, a Mixture of 0.5 wt% ZrCl$_4$ and 10 wt% UCl$_3$ with 200 mV/S Scan Rate (Hoover et al.), and a Mixture of 0.99 wt% ZrCl$_4$ and 0.79 wt% UCl$_3$ with 50 mV/S Scan Rate (Murakami et al.) in LiCl-KCl at 773 K