1. Background and objectives

- Investigation of characteristic data of fuel debris for its removal operation and appropriate management
- Factors affecting debris characteristics specific to the Fukushima accident
 - Seawater injection, no reflood: salt deposit on high temp. corium
 - BfC control blade: chemical form of boron in solidified core melt?
 - MOX fuel, FPs
 - Large amount of MCCl products at the bottom of containment vessel
- Lab-scale experiments on simulated debris to understand the above factors

2. High temperature reaction between (U,Zr)O₂ and sea salt deposit

- Simulated corium: (U₃₋₂Zr₂O₇)O₂ (metastable fcc), (U₁₋₂Zr₂O₇)O₂ (tet.+mon.)
- Salt powder prepared from natural seawater:
 - NaCl : MgO: 6H₂O : MgSO₄ : H₂O / CaSO₄ / KCl = 87.9/5.8/2.9/1.8/1.7 (mol%)
- Isothermal treatment and analyses (XRD and SEM/EDX)
 - Powder mixture / corium pellet in salt bed
 - 815 ~ 1395 °C, 2 ~ 20 h, under Ar or air flow
 - Thermal decomposition of salt components
 - Vaporization of NaCl above Mp. (800 °C+)
 - Stable, crystalline MgO from chloride and sulphate
 - CaO (?) from sulphate, most reactive with corium
 - Evolution of HCl (corrosive) and SOX (oxidizing) gases
- Reaction products depends on oxygen partial pressure (pO₂)
 - Under high pO₂ where UO₂ is stable:
 - Dense Ca+(Na⁺)-U-O uranate layer on the corium surface
 - (U,Zr)O₂ oxidized to orthorhombic U(V)-Zr-O and U₂O₂-ZrO₂ ss.
 - Under low pO₂, where U₂O₅ is stable:
 - (U,Zr)CaO₂ partial solution on the corium surface
 - But low diffusivity of CaO

3. Characterization of solidified core melt involving BfC control blade

3.1. Phase identification in arc-melted specimens

- Investigating the phase relationships in the solidified core melt (ex. molten pool)
- Fuel materials: (U,Zr)O₂, Zr
- Control Blade materials: BfC, SS316L
- Arc melting of compacted mixtures under Ar atmosphere, subsequent annealing under Ar or Ar-0.1%O₂ atmosphere
- Phase identification on the cross section by XRD and SEM/EDX

Example of the arc-melted mixture of BfC/SS/Zr(U,Zr)O₂ reaction product. The pellet surface is covered by the typical orange-coloured uranate layer. (Air atmosphere, 1002 °C, 12 h)

(Left) Cross sectional SEM image of sea salt(U₃₋₂Zr₂O₇)O₂ reaction product. The pellet surface is covered by the typical orange-coloured uranate layer. (Air atmosphere, 1002 °C, 12 h)

(Right) Stable reaction products shown on the UO₂-U₂O₅-U₂O₇ boundary diagram.

3.2. High temp. oxidation behaviour

- Annealing of a piece at 1500 °C for 10 h under pO₂=1×10³ atm (=steam cond.)
- Metallic part remelted during the isothermal treatment
- Zr and U in the alloy, Zr in ZrB₂, selectively oxidized : (Zr,U)O₂ scale formed on the surface, instead the (Fe,Cr,Ni)B matrix extensively formed inside
- No ferrous oxides formed under this condition

3.3. Microhardness of phases in solidified core melt

- A basic mechanical property for considering machining tools for debris removal
- Employed a micro Vickers tester
- Borides, especially ZrB₂, are considerably harder than any other materials: potentially barrier for cutting tools

Schematic of the phase relationships in the solidified BWR core melt as a function of the initial BfC/Zr ratio, under low oxygen partial pressures.

4. Other research works ongoing

- Phase relationships in U-Zr-O system under oxidizing condition (U₂O₅ domain)
- Phase relationships in simulated MCCl product : arc melting (homogeneous melt) or light-concentrating heating (temp. gradient) of concrete/SS/Zr(U, Zr)O₂ system
- Bulk mechanical properties for machining tools: compressive strength, Young's modulus, fracture toughness, etc.
- Chemical behaviour of debris in water (boric acid, hydrogen peroxide, etc.)
- Development of debris dissolution technique for destructive chemical analysis
- Effective use of TMi-2 debris specimens for verification

5. Conclusions and Acknowledgements

- Various types of simulated fuel debris specific to the Fukushima accident were prepared and characterized to contribute for the removal operation and management
- Among the sea salt components, CaO decomposed from sulphate was found to be most reactive with (U₂O₅) corium. The reaction products depends on the oxygen partial pressure, in other words, the oxidation state of uranium.
- The phase relationships in the BWR-type core melt were investigated. ZrB₂ and ferrous borides potentially form in the alloy matrix of Fe-Cr-Ni and (Fe,Cr,Ni)B(Zr,U). These borides are extremely hard materials.

This paper includes the results of research program funded by the Agency for Natural Resources and Energy, the Ministry of Economy, Trade and Industry (METI) of Japan.

References