Beyond Design Basis Analysis: Developments in UK’s Approach and Perspective

IAEA International Expert’s Meeting on Severe Accident

Prof. Ali Tehrani
Principal Inspector – Nuclear Safety
March 2014
Overview

• Brief overview of UK’s post-Fukushima response

• Explore and compare UK’s 3 types of Fault Analysis Methods: Risk assessment → F/S → PSA → Severe Accidents Analysis

• Focus of severe accident analysis and output of the analysis

• A methodology proposed for SAA

• Stimulate thinking and discussion!
Background

• From discussions with other International Regulators and ENSREG Stress Tests: It appears that we do not all have a common understanding

• Believe better Severe Accident Management (SAM) from better Severe Accident Analysis (SAA) will be the lasting legacy from Fukushima
UK Post-Fukushima Response

• Three “Weightman Reports”
 – Implications
 – Implementation

• ENSREG Stress Tests
 – Including for non-NPPs

• In present (SAA / SAM) context:
 – Has focussed minds on need for better SAA and SAM
 – New guidance (SAPs and TAGs) are being developed
UK’s Three Fault Analysis Methods

- Guidance provided to Inspectors on risk assessment in Safety Assessment Principles (SAPs)

http://www.hse.gov.uk/nuclear/saps/

<table>
<thead>
<tr>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault analysis:</td>
</tr>
<tr>
<td>general</td>
</tr>
<tr>
<td>Design basis analysis, PSA and severe accident analysis</td>
</tr>
</tbody>
</table>

Fault analysis should be carried out comprising suitable and sufficient design basis analysis, PSA, and severe accident analysis
Complementary Approach - Fault Analysis

• Three complementary approaches designed to ensure nuclear Fault Analysis is adequate in its totality:
 – DBA: Design Basis Accident Analysis
to ensure the design is robust, fault tolerant and has effective safety measures
 – PSA: Probabilistic Safety Analysis
to ensure overall risks are acceptable and balanced; and to understand strengths, weaknesses and inter-dependencies in the overall design
 – SAA: Severe Accident Analysis
to ensure provision and planning for severe but unlikely faults (accidents)
DBA, PSA and SAA Compared

Schematic Illustration of Defence in Depth Approach to Operating Rules

Office for Nuclear Regulation
An agency of HSE
DBA, PSA and SAA Compared

- **DBA**: All sequences with $\text{IEF} > 10^{-5} \text{y}^{-1}$, excluding those that fail to meet consequence thresholds
- **PSA**: All sequences down to very low IEFs ($\sim 10^{-7} \text{y}^{-1}$)
- **SAA**: States with offsite consequences $> 100 \text{mSv}$ (conservatively assessed)
What is a Severe Accident?

IAEA NS-G-2.15:

A Beyond Design Basis Accident comprises accident conditions more severe than a design basis accident, and may or may not involve core degradation, such accidents are termed severe accidents.

ONR’s SAPS para. 543 (Guidance for ONR inspectors)

‘fault sequences beyond design basis that have the potential to lead to a severe accident … FA16’

Severe accidents are those faults that have the potential to lead EITHER to consequences exceeding the highest radiological doses (>100 mSv to Public, >500 mSv to Workers) OR unintended relocation of radioactive material within the facility which places demand on the integrity of the remaining physical barriers.

TECHNOLOGY NEUTRAL
Output of the Analysis: Safety Enhancement

WENRA, Harmonization of Reactor Safety

Principle: Consideration shall be given … to selection of severe accidents, to determine those sequences for which reasonable practicable preventive or mitigatory measures can be identified (accident vulnerability study); combination of *engineering judgement* and *probabilistic methods* can be used and evaluations be made on a *best estimate basis*.

(a) Instrumentation and hardware provisions

(b) Emergency operating procedures for management of severe accidents

- Equipment
- Instructions
- Training
DBA, PSA and SAA Compared

- **SAA**: Three types of states considered:
 1. High consequence scenarios of low frequency beyond the design basis;
 2. Design basis scenarios where the safety provisions are assumed to fail; and
 3. Scenarios traditionally not covered by UK safety cases such as malevolent acts, leading to high consequences.

Office for Nuclear Regulation
An agency of HSE
DBA, PSA and SAA Compared

• Logic is that if you are operating a facility with a hazard where the accident consequences are of national (international) significance (e.g. affects GDP),
 – You should at least have a good plan for how you would address such a state.
 – Analogy is home (contents, fire …) insurance
DBA, PSA and SAA Compared

• Methodologies:
 – DBA: conservative according to strict, defined rules;
 – PSA: best estimate, probabilistic supported by deterministic calculations
 – SAA: best estimate deterministic calculations and research
DBA, PSA and SAA Compared

• Analysis Focuses on:

 DBA
 prevention and protection

 PSA
 protection (and mitigation)

 SAA
 mitigation (and protection)
DBA, PSA and SAA Compared

- Typical outputs to be implemented:
 - **DBA**
 - Limits instructions; and conditions, safety measures,
 - **PSA**
 - Numbers of safety measures, limits and conditions, maintenance schedules
 - **SAA**
 - Strategies, advance thinking, timings, plant / equipment, qualification requirements, supplies
DBA, PSA and SAA Compared

• Plant / equipment requirements - ENSREG demonstrated two types of fundamental philosophy being adopted:
 – Robust qualification approach (bunkered)
 – Diverse, redundant and flexible approach
 – Usually it’s a mixture of the two
DBA, PSA and SAA Compared

- Overall message:

SAA is distinctly different from DBA and PSA – so our guidance (Safety Standards) are to reflect these differences
Where are we now?

1. New UK guidance is being updated.

2. UK licensees are in process of producing significantly improved SAA and implementing this through enhanced SAM.

3. IAEA / WENRA guidance focuses mostly on procedural aspects of SAM and on research, to be complemented by SAA.
Questions and Discussion