

Fukushima effect on SAM requirements and regulatory oversight in Hungary

Dr. Gábor Petőfi Hungarian Atomic Energy Authority

International Experts' Meeting on Severe Accident Management in the Light of the Accident at the Fukushima Daiichi Nuclear Power Plant March 17-20, 2014, IAEA, Vienna, Austria,

Outline of presentation

- Hungarian nuclear programme
- SAM History
- SAM modifications before Fukushima
- Implementation
- Post-Fukushima SAM measures
- Post-Fukushima changes of requirements
- Lessons for consideration

Hungarian nuclear programme

- Paks NPP
 - 4 VVER-440/213 reactors commissioned in 1983-87
 - 40% of electricity prod.
 - Service life extension
 30 + 20 years
 - Two new VVER reactors (2023-26)
- Interim spent fuel storage facility
- Budapest research Reactor
- 100 kW training reactor
- Low and intermediate radwaste disposal facility

SAM history

- Requirements 1993-1997
 - Periodic Safety Review, PSA, severe accident management
- Implementation
 - First PSR for finalized in Paks NPP in 1999
 - Living PSA Level 1
 - SAM needs were identified
- In 2001: Paks NPP intention for service life extension
- In 2005: new set of nuclear safety requirements
 - SAM is a clear pre-condition for service life extension
 - Full-scope Level 2 PSA shall be completed

Hungarian Atomic Energy Authority

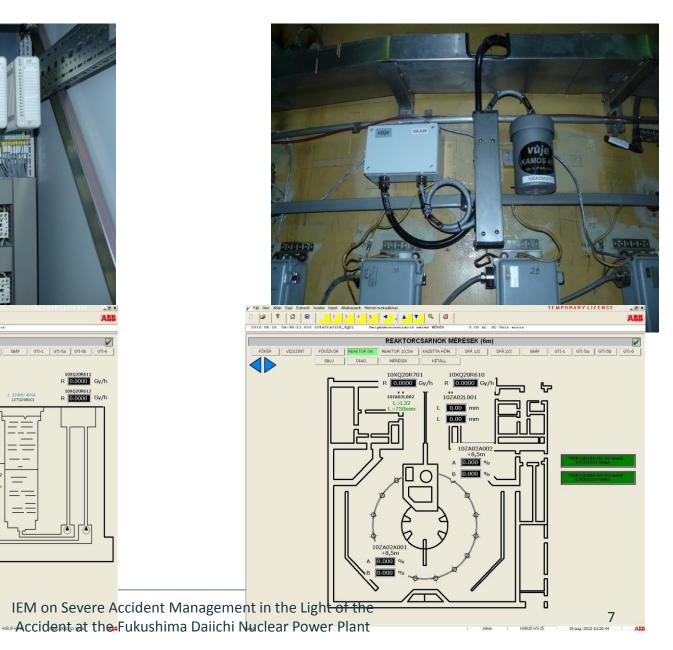
- Select AM strategies
- Identity back-fit measures
- Risk reduction options
- Basis for regulatory decisions

SAM basis – PSA Level 2

- Internal PIEs and hazards
- Seismic PIEs
- SFP events

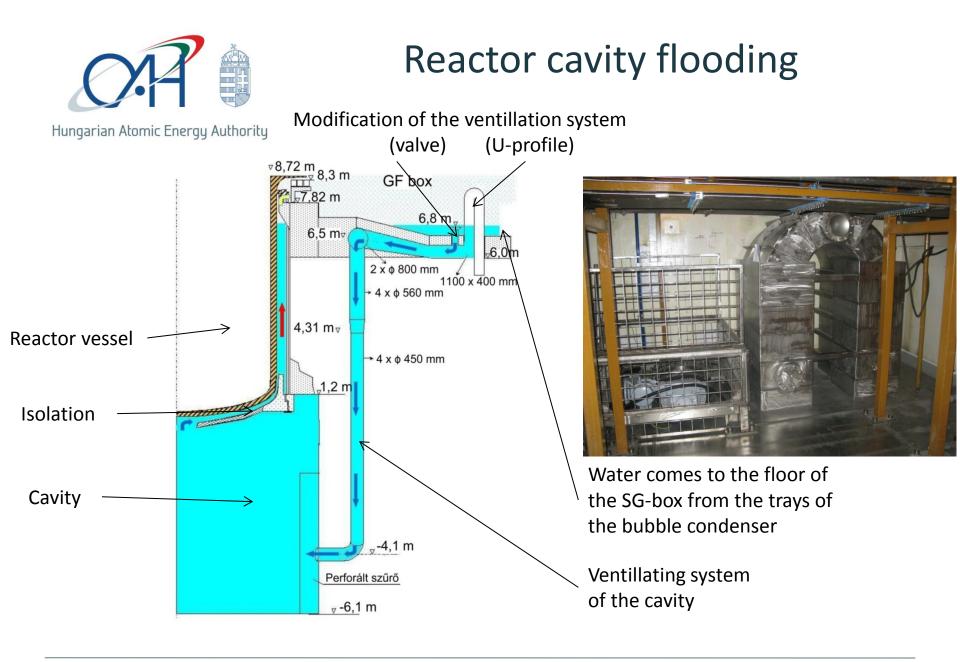
Containment failure mode	Main reason of the failure	Relevant SAM measure		
High pressure vessel failure	Failure of primary depressurisation	more reliable and separate electrical source for SVs		
Containment by-pass	SG tube or collector rupture	redirect the coolant from the secondary side into the confinement in case of PRISE		
Early containment failure	Hydrogen burn; reactor cavity failure	Installing hydrogen recombiners; IVMR with external cooling		
Late containment failure	Containment slow overpressurisation; Base-mat errosion	IVMR with external cooling; Containment heat removal		
Late containment enhanced leak	Cavity door seal failure	IVMR with external cooling		




Concluded SAM measures before Fukushima

- Installation of SA instrumentation and monitoring
- Construction of reactor cavity flooding system
- Construction of autonomous power supply to designated consumers
- Installation of passive hydrogen recombiners
- Reinforcement of cooling circuit of spent fuel pool against loss of coolant
- Introduction of severe accident management guidelines
- SAMGs and Technical Support Centre

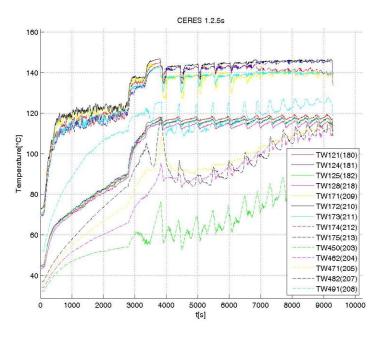
SA instrumentation and monitoring



SA instrumentation and monitoring

Hungarian Atomic Energy Authority

- Independent power supply
- SA environmental conditions
 - Pressure above the core
 - Core outlet temperatures
 - Water level in the confinement
 - Water level in the cavity of the reactor vessel
 - SG water levels
 - Pressure in the confinement
 - Temperature in the confinement
 - H and O concentration in the confinement
 - Water level in the cooling pond
 - Dose rates in the reactor hall and the confinement
 - Environmental measurement system



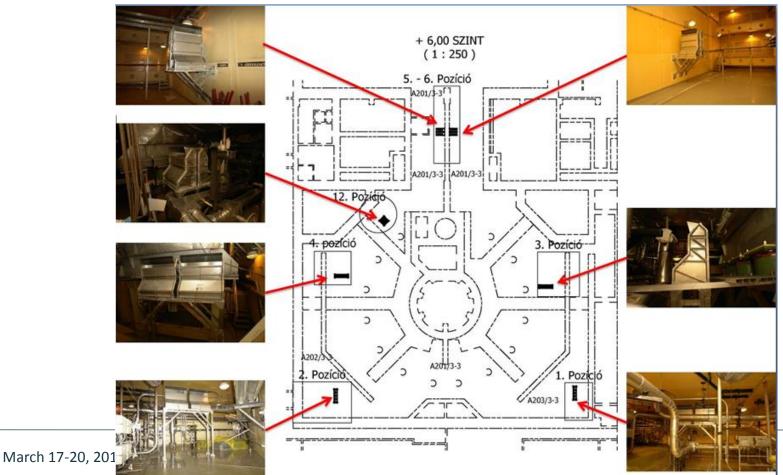
Reactor cavity flooding: CERES experiment

Hungarian Atomic Energy Authority

- Efficiency of the cooling loop: proven experimentally by AEKI on CERES test facility
- An integral model of the vessel external cooling loop
- 1/40 slice of reactor vessel surface
- Wall heating (>500 kW/m²) provides the driving force for natural circulation in the 8 m channel.

Autonomous power supply

- 4xSA diesels /100 kW: for minimum SA I&C
 - Stored at the site in a separate building
 - SA measurements, valve opening, emergency lighting
 - Charge batteries
- > 24hours
- In operation in 90 min
- Connected as EOP action (before SAMG initiation)



Passive hydrogen recombiners

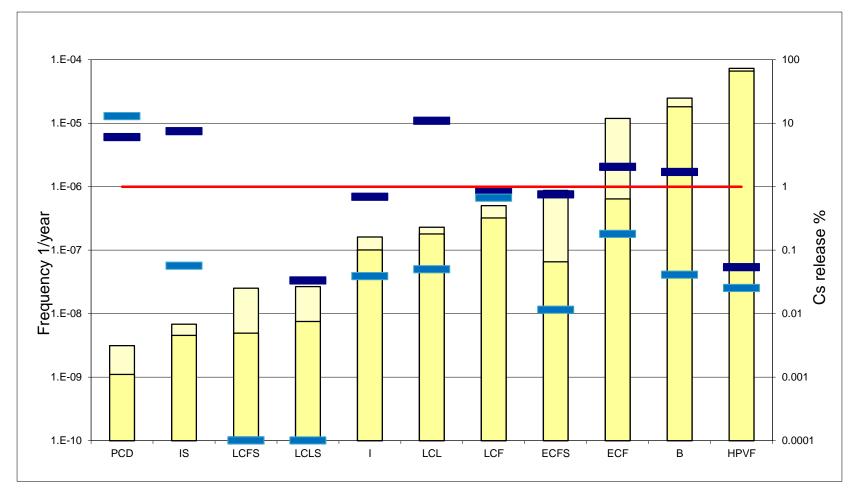
Hungarian Atomic Energy Authority

- 60 H-recombiners at each unit
- Optimal positions: H-distribution analysis by MAAP4/WWER

SAMGs

- Westinghouse-type SAMGs for all states and SFP
- Entry to SAMG from EOPs according to T_{core outlet}
- SAMGs executed at TSC
- Training and validation exercise was pre-condition

	H	ASZNÁ	LATE	AN LÉVŐ	SBU ÉS/VA	GY KVU ST	RATÉGIÁK	S.	
		DIAG.	M	tor 10,5M	KAZETTA HŐM.	DFÁ 1/2	DFÁ 2/2	SBÁF GT	I-1 GTI-Sa GTI-Sb GTI-
		HASZNA IGEN	NEM	7		T (MAX/MIN)	ALARM	<u>↑</u>	↓
BU-1	A FÖVÍZKÖR NYOMÁSMENTESÍTÉSE			P<20 bar	0.00	be	ar 📕		GR1/1
BU-2	HERMETIKUS TÉR ELÄRASZTÁSA			L<750 vagy L<6000 mm	0.00	0.00 m	m 🗖		GR2 GR3 GR4 GR6/1 GR6/
BU-3	BEFECSKENDEZÉS A FÖYÍZKÖRBE			T>370 ℃	0.00	•(GR5
BU-4	RADIOANTÍV HIBOCSÁTÁS CSÖKHENTÉSE	10090	3000_210	R<1E-3 Gyth	0.00	G	y/h		GR2 GR6/1 GR6/
BU-5	VÍZBEADÁS A GÖZFEJLESZTÖBE			L>2500 mm	0.00	m	m 🗖		GR1/1 GR1/2
BU-6	KONTÉNMENT ÁLLAPOT ELLENŐRZÉS			P<50 mbar	0.00	m	bar		GR1/1
BU-7	HIDROGÉN KONC. SZAB A KONTÉNMENTBEN			C<4 %	0.00	91			GR2 GR3
BU-8	PIHENTETÔ MEDENCE ÚTMUTATÓ			L>13600 mm	0.000	m			GR5
/U-1	RADIDANTÍV KIBOCSÁTÁS KORLÁTOZÁS			R<1E-2 Gyth	0.00	G	y/h		GR2 GR6 GR6/
/U-2	KONTÉNMENT NYOMÁSMENTESÍTÉSE			P<2300 mbar	0.00	m	bar		GR1/1
/U-3	HIDROGÉN BYULLADÁS SZABÁLYOZÁS			C<10 %	0.00	91			GR2 GR3
/U-4	KONTÉNMENT VÁKUUMSZABÁL YOZÁS			P>-300 mbar	0.00	m	bar		GR1/1

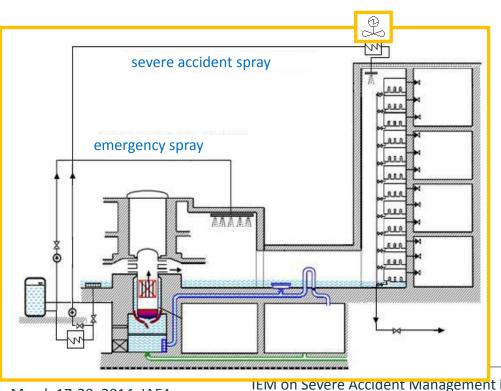

Training and validation

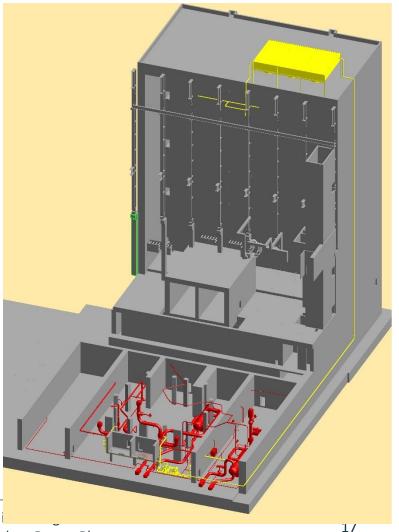
- Validation
 - Emergency exercise with 4 scenarios incl. 1 for SFP
 - Under realistic circumstances
 - To test the guidelines, TSC, interface with CR and ERO, time needs, provide feedback
- Training
 - To provide knowledge, improve skills and efficiency of implementing SAMGs
 - Class room, SAMG implementation, drills

Results of Level 2 PSA 2004 vs 2012

Hungarian Atomic Energy Authority

March 17-20, 2014, IAEA


Post Fukushima SAM

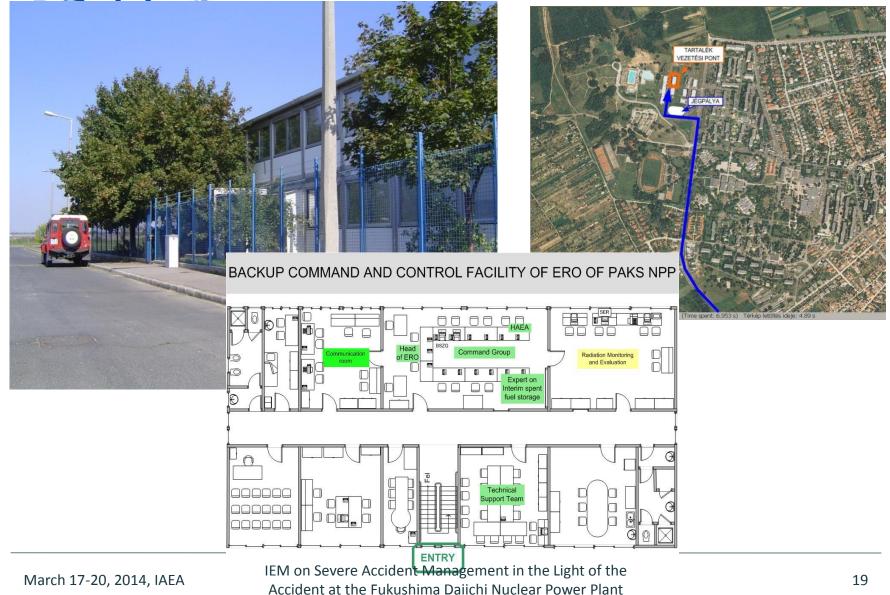

- Outcomes of the Stress Test of Paks NPP
- Decided actions:
 - Long term containment cooling
 - Alternative water supply
 - SAMGs to cover multi-unit accidents
 - New Backup Emergency Centre
 - Independent power supply for the climate system of EC
 - Revision of radio connection
 - Shielded transport vehicle
 - Creating a computer based SA simulator
 - Upgrading computer systems of the centers
 - Organizational and documentation matters
 - SA liquid waste management

Containment cooling system - concept

- Active SA spray system (2 pumps)
- Air-cooled towers (3 modules)
- Power supply by bunkered SA DGs

Accident at the Fukushima Daiichi Nuclear Power Plant

Alternate water supply from fire water system


Hungarian Atomic Energy Authority

New Backup Command Centre

Post Fukushima requirements

Hungarian Atomic Energy Authority

- Development based on 3 main sources
 - Draft WENRA revision
 - IAEA Draft of revised requirements
 - Hungarian stress test results
- Main issues tackled
 - Preparation for cliff edge effects
 - Multiple unit sites, neighboring sites
 - Supplemented requirements for external hazards
 - Generalization of requirements for spent fuel pools
 - Reinforcement of independent technical support centre
 - Use of alternative systems and cross connections between units
- Draft requirements are sent for public administration coordination. Expected to be issued by end of 2014

Lessons for consideration

- SAM development is a long process
 - Selection of concept
 - Site and reactor-type specific solutions are required
 - Experimental evidence for some measures
 - Regulatory approval
- Requirements shall also follow operating experience
- PSA Level 2 is important tool to decide and measure SA
- Pre-condition for long term operation
- Harmony with Fukushima lessons
- Training and validation is important pre-condition

Thank you for listening to me!