Development of SCC Resistant Canister for Spent Fuel Storage and Transport

Masanori Goto, Ryoji Asano
Hitachi Zosen Corporation, Tokyo, Japan

IAEA International Conference on the Management of Spent Fuel from Nuclear Power Reactors

June 19, 2015
Outline

- Introduction and background of SCC
- Technical issue for practical use of concrete cask in Japan
- Solution of the issue
- Conclusion
Introduction and background of SCC

• Interim storage facility (ISF) will be likely to be built at coastal area.

• The salty air contacts to the canister surface directly due to the natural convection of the cooling air.

• Salty particles in the cooling air adhere to the surface of the canister might be possible to induce the SCC and lose its containment function in the worst case.

It is one of the main reasons that the concrete cask is not used in Japan.
Technical Issue practical use of Concrete Cask in Japan

How to prevent SCC?

- Three factors are necessary to induce SCC.
- Measures for one or two of the three factors must be taken, i.e. mitigation of tensile residual stress, corrosion resistance material, and environment control.

To make a canister surface tensile residual stress compressive, as a preventive maintenance against SCC
Solution of the issue

Specifications for SCC resistant canister

- **Material**
 - Austenite stainless steel:
 - UNS S30403 (Type 304L), UNS S31603 (Type 316L)

- **Welding**
 - Laser weld

- **Surface treatment** (to make surface stress compressive)
 - Completion of fabrication at factory:
 - Zirconia Peening on whole surface
 - After lid welding at Nuclear Power Station (NPS):
 - Burnishing on Lid Weld and Heat Affected Zone (HAZ)
Solution of the issue

Zirconia Peening

Bulk specific gravity 2.2 < 6.0
Hardness (Hv) 570 < 1300

Change in the surface layer by peening
- Shape change
- Compressive residual stress
- Metallurgical structure
- Hardness

Deep Compression area
Solution of the issue

Burnishing

- Post-weld surface enhancement processing via low plasticity burnishing (LPB) can be used to introduce deep compression into tensile fusion welds thereby mitigating SCC.

Burnishing tool schematic

Ball burnishing tool

Compressive residual stress
Solution of the issue

Residual stress measurements

Zirconia peening

[Measurement of Residual Stress with X-Ray Diffraction]
Solution of the issue

Stress corrosion cracking test in 42% MgCl$_2$ aqueous solution at 143°C (JIS G0576)

As welded

Crack is not observed

Grinding + Buffing + Zirconia peening

Burnishing

Crack is not observed
Solution of the issue

- Pitting corrosion test

 In long-term use, the SCC generation from the site of tensile layer beneath the compression layer by pitting, is a concern.

 - Chloride Density : 10 g/m²
 - Environment : 50°C, 35%-RH
 - Material : 304L, 316L
Estimation of Maximum pit depth

<table>
<thead>
<tr>
<th></th>
<th>Pitting depth for 60 years</th>
<th>Depth of compressive stress area</th>
</tr>
</thead>
<tbody>
<tr>
<td>316L-Zirconia peening</td>
<td>401µm</td>
<td>800µm</td>
</tr>
<tr>
<td>316L-Burnishing</td>
<td>402µm</td>
<td>1500µm</td>
</tr>
</tbody>
</table>

- Assumed that the pitting corrosion is grown linearly based on the maximum pitting late of 3000h at 50 °C 35% RH
- Time of exposure to corrosive environments is the time that relative humidity becomes more than 15%RH
Conclusions

- Both Zirconia peening and burnishing are very effective methods for preventing SCC.
- Zirconia peening and burnishing can give deep compressive residual stress.
- Pitting originated SCC may not occur during 60 years because the maximum pit depth of the material with burnishing or zirconia peening, is less than that of compression depth.
Thank you for your attention!
Surface appearance change due to fabrication process

As welded

Grinding

Grinding + Buffing

Grinding + Buffing + Zirconia peening

Ra: 6.7 μm

Ra: 1.1 μm

Ra: 14.1 μm
Pitting test specimen

Fusion boundary
Weld metal
HAZ (5mm from F.B.)
Base metal
Estimation of the Humid Period

CGR: $2 \times 10^{-11} \text{m/s}$

- 38mm / 60years
- 1.1mm / 15000hr

RH at bottom of the canister (%)

Summated time: 15000h

SCC occurs for S30403 at 80°C above this line

[CRIEPI Report: N10035]