How innovative approaches & technologies throughout the Fuel Cycle are supporting NPP Operations while anticipating future back-end Challenges

Dr. Mustapha Chiguer, Jean-Michel Grygiel

AREVA
1, Place Jean Millier 92084
Paris-la-Defense, France
mustapha.chiguer@areva.com
Main drivers

- Nuclear safety
- Non-proliferation & security
- Environmental impact & footprint
- Public acceptance
- Cost or financial Uncertainties

...and challenges

- Increase energy independence
- Optimize cost of nuclear electricity
- Increase Plant availability and Performance
- Save natural resources (uranium, DGR footprint, …)
- Minimize waste generated
structuring policy and regulation

international agreements
ex. joint convention on the safety of sf & rw management of 1997
“each contracting party shall ensure the prime responsibility for the safety of sf or rw rests with the holder of the relevant license”

European union directive
European council directive 2011/70/euratom of July 19, 2011
“each member state shall have ultimate responsibility for management of SF and RW generated in it”

National Policy
French nuclear waste act of June 28, 2006
“nuclear operators commit for SF & RW mgt funding while minimizing industrial footprint”

• By authorizing Nuclear activities on its soil, the state take a Long term responsibility regarding Used Fuel & RW Management policy

• By Operating NPP or Facility, Operators take also Long Term responsibility

LT Responsibility requires a look at the individual Fuel Cycle steps and how they all impact each other
At the Front-End

the Fuel is a technology demanding and driven business

Front-End
- Containment and Handling of nuclear material

In the Reactor (all together for 3 to 6 years)
- Containment of the nuclear material, the cladding is the first barrier
- Maintaining geometry, chain reaction control
- Extracting power
- Ability of the core to cool down in the event of an accident

Back-End, On leaving the reactor
- Containment and handling of the nuclear material
- Removal of decay heat
- Ability to be stored
 - Wet or dry conditions
 - For more and more extended time
- Ability to be reprocessed and recycled
- Ability to be transported
- Ability to be disposed in DGR
Case 1 – GAIA fuel, Innovation based on Proven products and high performance Features

GAIA New Generation Fuel
Based on Current AREVA fuel designs,
- HTP™ with its proven robustness against GTRF failures
- AFA-3G™ with its excellent thermal-hydraulic performance

High-performing features
- Reinforced MONOBLOC™ guide tube
- High density chromium doped pellets
- GRIP™ bottom nozzle
- M5® Cladding
Case 1 – GAIA fuel,
Innovation based on Proven products and high performance Features

- **Enhanced Reliability and Robustness through:**
 - Superior rod supports ensuring that GTRF margins are kept for long cycles and severe environments
 - Increased margins against incomplete rod insertion and FA distortion
 - Superior debris fretting efficiency

- **Increased Flexibility**
 - **M5®** excellent corrosion resistance allows higher BU
 - Chamfered pellets made of chromium doped fuel:
 - Reduce the risk of chipping and increase margins re. PCI allowing more flexible Plant Operation
 - Increase design margins at the EoL conditions which is supported by a low volume of fuel rod spring
 - **M5®** higher resistance to corrosion and low Hydrogen uptake are both key to flexible used fuel Management corrosion resistance and ductility (ex. Storage, Extended interim storage periods, Transport after storage)

Excellent LT Behavior through enhanced resistance and lower sensitivity to highly irradiated cladding and Fuel Assembly Structure
Brings to 0 the balance of used fuel and fissile materials at NPP EoL

The concern
Recycle all nuclear Materials prior to reactor End-of-Life (EoL)

- Single or small reactor fleets
- Limited lifespan

PRECYLING
Advanced Recycling Solution
Brings to 0 the balance of used fuel and fissile materials at NPP EoL
- Drastically reduces all risks related to LT Management of used fuels
- Reduces Front-End requirements
Brings to 0 the balance of used fuel and fissile materials at NPP EoL

Core’s Plutonium balance sheet at the end of every 3 cycles

52 x U_3 U_4 U_5
+5 +5 +5
+780 kg
100% UOX Core *

Production of Pu in Uranium Core during electricity generation*

52 x U_3 U_4 MOX
+5 +5 -10
~0 kg
30% MOX Core *

No production of Pu in 30% MOX Core during electricity generation*

52 x U_3 U_5 MOX
+5 -5 -10
~150 kg
~40% MOX Core *

Consumption of Pu in ~40% MOX Core During electricity generation*

52 x MOX MOX MOX
-10 -10 -10
100% MOX Core *

Consumption of Pu in 100% MOX Core During electricity generation*

Early and Sufficient Pu consumption key to offset Pu production during electricity generation in Uranium Oxide fuel

* Based on eq 900 MWe
Case 2 – The PreCycling
A Dutch Case at EPZ - Borsele

1. AREVA loans MOX that will be loaded in the reactor from 2014 until 2026. Last MOX assembly will be discharged by 2033.

2. Until 2033, the NPP will be operated with Uranium fuel only. Plutonium resulting from treatment will be transferred to AREVA as a re-imbursement of the loaned Plutonium.

3. No Dutch plutonium left; only residues will be returned to Netherlands for storage & disposal (No Used Uox or MOX Fuels left!)
Case 2 – Zero end-of-Life materials balancing thanks to optimized rate MOX Core

- **Pre-Recycling**
 - U_3O_8 Purchase
 - Conversion
 - Enrichment
 - Fuel Fabrication
 - NPP
 - Reactor Core
 - SFP
 - Transport
 - Recycling
 - Waste Storage
 - Waste disposal

- **Direct disposal**
 - Reactor Core
 - SFP
 - NPP
 - Waste Storage
 - Waste disposal

- **Recycling**
 - Reactor Core
 - SFP
 - NPP
 - Waste Storage
 - Waste disposal

- **HLW Packages**
 - Pre-Recycling
 - Recycling
 - Direct disposal
Decay Heat Removal, a continuous challenge as safety cases keep changing and Facility EoL and End-point fading

Confluence of reasons
- Extension of NPP lifetime,
- Delays in BE strategy implementation,
- Fukushima Lessons Learned
- Limited remaining capacity at SFP
- More stringent safety requirements at existing SFP

AREVA Wet Passive Cooling brings response
- Fail-safe decay Heat Removal Solution
- Qualified and proven Solution
- Flexible and adaptable solution:
 - New build or existing facility
 - Footprint to various site-specific conditions
Case 3 - Decay Heat Removal,
A challenging duty operation due to a confluence of safety, life extension management and lack of end-point

Main benefits
AREVA Wet Passive Cooling
◆ Ensures cooling of the pool in case of loss of power supply (SBO)
 • No emergency Diesel required
 • No safety-related I&C is required
 • Avoids active single failure criterion for the fuel pool cooling function
◆ Marginal Operational Costs
 • Dedicated maintenance and repair concept for full time
◆ Easily licensable
◆ Small footprint and adaptable to almost every site specific conditions
◆ Proven design and construction & operation experiences gained
Case 3 - Decay Heat Removal
A Swiss Case at Goësgen

- **Main design features**
 - Storage building dim. 35m x 17m
 - Capacity: 1008 SF assemblies (UOX & MOX)
 - Minimum cooling period prior to receive SF

- **Passive Fuel Cooling System**
 - Decay Heat Power to be removed from the SFP: 1.0MW maximum
 - Heat removal from the spent fuel pool is achieved by natural circulation supported by fans during normal operation

- **The fuel pool cooling system is designed to manage accidents without active components**
 - Free convection in the SFP
 - Natural convection in the intermediate cooling system
 - Natural ventilation in the dry cooling towers
Case 4 - Radioactive Waste Management: how to take-up present and future challenges

- Adhere to 5 « golden rules »
 - Avoid waste at source
 - Maximize sorting and decontamination
 - Reduce volumes
 - Condition at the earliest
 - Initiate the right R&D at the right time

- Innovate for legacy waste and already planned inventory
 - by adapting existing routes with the aim at increasing performance
 - by creating new routes only when necessary

- Ambition a « zero waste » nuclear future
 - Pursue R&D efforts for long term nuclear evolution

IAEA International Conference on Used Fuel Management - June 2015 M. Chiguer
Target the zero waste objective

when designing
- A stepwise approach serving this ambition
- Example: the cold crucible melter
 - Lifetime x 10 ➔ less technological waste
- Integration of operational feedback

when operating
- Strengthen the zoning of facilities and equipment ergonomics
 - Systematic assessment of the waste zoning relevance
Radioactive Waste Management: how to take-up present and future challenges

« Decategorizing » whenever possible

THE EXAMPLE OF ULTRASONIC TREATMENT OF PUO\textsubscript{2} CANS

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
<th>Management</th>
<th>Disposal Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low level (VLL)</td>
<td>Management by radioactive decay on the production site</td>
<td>Recycling or dedicated surface disposal</td>
<td>(Industrial centre for collection, storage and disposal (Cires) disposal facility in the Aube département)</td>
</tr>
<tr>
<td>Low level (LL)</td>
<td>then disposal through routes dedicated to conventional waste</td>
<td>Surface disposal</td>
<td>(Aube waste disposal facility)</td>
</tr>
<tr>
<td>Intermediate level (IL)</td>
<td></td>
<td>Shallow depth disposal</td>
<td>(being studied pursuant to the Act of 28 June 2006)</td>
</tr>
<tr>
<td>High level (HL)</td>
<td>Not applicable(^2)</td>
<td>Deep geological disposal</td>
<td>(being planned pursuant to the 28th June 2006 Act)</td>
</tr>
</tbody>
</table>

IAEA International Conference on Used Fuel Management - June 2015 M. Chiguer
Conclusion and Takeaway

- Do consider entire life cycle when developing and implementing Operation or technology innovations
 - Discourage local optimization at the expense of overall system performance

- The best waste being the waste that hasn’t been generated
 - Avoid Waste, if not, do recycle

- Do not miss opportunity

- Trends across nuclear countries, in cascading Used Fuel and Waste management responsibility, are encouraging
 - IAEA’s 2014 Scientific Forum on Comprehensive & integrated “cradle-to-grave” approach for the Management of NW
Thank you for your attention