Development of an Execution Strategy Analysis (ESA) Capability and Tool for Storage of Used Nuclear Fuel (UNF)

M. Nutt / N. Saraeva
Argonne National Laboratory, USA

R. Stoll / J. Voss / J. Greeves
Predicus LLC, USA

A. Keizur / A. Neir
Golder Associates Inc., USA

Vienna, Austria
June 18, 2015
Questions Related to Implementation of Interim Storage

What are

- Implementation approaches for meeting the *Strategy’s* goals?
- The critical path milestones and activities?
- The interdependencies across program elements?
- Key program risks and potential mitigation strategies?
- Impacts of various policies and potential legislation?
- The long lead time activities?
- Near term activities that provide schedule benefit and reduce risks?

Cannot answer one without thinking about all – “integrated thinking is key”
ESA – A Key Part of NFST Integrated Waste Management System Analysis

- **Multi-Objective Evaluation Framework**
 - Stakeholder objectives & value measures
 - Attributes of alternative system architectures
 - Operational uncertainty

- **Facilities and Infrastructure Analysis**
 - Operational end states
 - Design of alternative system architectures
 - Selection of optimal system architecture

- **Execution Strategy Analysis**
 - Development pathways
 - Major decision milestones
 - Design of alternative implementation strategies
 - Selection of optimal strategies

Execution Plan

Subject Matter Experts; Other Analyses

- Alternative implementation strategies/plans
- Development uncertainty
The ESA approach builds on traditional project management tools (i.e., Gantt Charts, WBS) and provides additional insight

- Integrates all key project elements
- Explicitly models uncertainty and its impacts
 - Traditionally cost and schedule – other important metrics can be included (i.e., jobs)
- Explicitly models risks and opportunities
 - Technical and non-technical
 - Associated uncertainties
- Allows for the assessment of alternative scenarios to provide information on potential impacts and benefits of alternative implementation strategies
- Identified all milestones and activities required to start a Pilot ISF (and expansion to a Larger ISF)
- Sequenced them, identifying all interdependencies
- Quantified duration and cost; and uncertainty
- Identified and quantified risks
 - Technical and programmatic
 - “Controllable” and “non-controllable” risks
- Implemented into a dynamic probabilistic simulation tool to evaluate different scenarios and strategies
- Analyzed results to gain insight

Subject matter experts used during all steps
Explicitly model and assess impacts

- Uncertainties
 - Activity duration/cost
 - Funding
- Constraints
 - Policy (i.e., need for legislation)
 - Legislation
 - Regulatory
- Risks (strategy/cost/schedule)
 - Technical and non-technical
 - Policy
 - Regulatory change

Identify and evaluate alternative strategies and approaches

- Mitigation
- Optimization
Sensitivity Analysis: Milestone Completion Date

Annual Expenditure Rate

Statistics

- 10% 90%
- Mean
Analysis of the Likelihood a Milestone is on the Critical Path

<table>
<thead>
<tr>
<th>Programmatic</th>
<th>Licensing, NEPA, Permitting for Pilot ISF</th>
<th>Siting and Coordination</th>
<th>Reactor Infrastructure for Transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1a</td>
<td>M6.1a*</td>
<td>M5.1*</td>
<td>M10.1*</td>
</tr>
<tr>
<td>M1c</td>
<td>M6.1a</td>
<td>M5.1</td>
<td>M10.1</td>
</tr>
<tr>
<td></td>
<td>M6.1b*</td>
<td>M5.1a</td>
<td>M10.2</td>
</tr>
<tr>
<td></td>
<td>M6.2</td>
<td>M5.2</td>
<td>M10.3</td>
</tr>
<tr>
<td></td>
<td>M6.3</td>
<td>M5.2a</td>
<td>M10.4</td>
</tr>
<tr>
<td></td>
<td>M6.4</td>
<td>M5.3</td>
<td>M10.5</td>
</tr>
<tr>
<td></td>
<td>M6.5</td>
<td>M5.3a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M6.6</td>
<td>M5.3c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M6.7</td>
<td>M5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M6.8</td>
<td>M5.4a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M6.9</td>
<td>M5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M6.10</td>
<td>M5.5a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M6.14</td>
<td>M5.5c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M6.15</td>
<td>M5.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M6.16</td>
<td>M5.6a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M6.17</td>
<td>M5.6b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M6.18</td>
<td>M5.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M6.20</td>
<td>M5.8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conceptual Design</th>
<th>Pilot ISF Design</th>
<th>Transportation Hardware</th>
<th>Transportation Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2.1</td>
<td>M3.1</td>
<td>M8.1*</td>
<td>M9.1*</td>
</tr>
<tr>
<td>M2.2</td>
<td>M3.2</td>
<td>M8.1</td>
<td>M9.1</td>
</tr>
<tr>
<td>M2.3</td>
<td>M3.3*</td>
<td>M8.3</td>
<td>M9.1</td>
</tr>
<tr>
<td>M2.4</td>
<td>M3.3</td>
<td>M8.3a</td>
<td></td>
</tr>
<tr>
<td>M2.5</td>
<td>M3.4</td>
<td>M8.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M3.5</td>
<td>M8.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M3.6</td>
<td>M8.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M3.7</td>
<td>M8.8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programmatic</th>
<th>Pilot ISF Construction</th>
<th>Transporation Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>M11.0</td>
<td>M11.1</td>
<td>M9.1*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M9.1</td>
</tr>
</tbody>
</table>
Development of an Execution Strategy Analysis (ESA) Capability and Tool for Storage of Used Nuclear Fuel (UNF)

M. Nutt / N. Saraeva
Argonne National Laboratory, USA

R. Stoll / J. Voss / J. Greeves
Predicus LLC, USA

A. Keizur / A. Neir
Golder Associates Inc., USA

Vienna, Austria
June 18, 2015