

Result of whole body counting for JAEA staff members engaged in emergency radiological monitoring

for the Fukushima nuclear disaster

Chie TAKADA, Osamu KURIHARA*, Katsuta KANAI, Takahiro NAKAGAWA, Norio TSUJIMURA, Takumaro MOMOSE

> Nuclear Fuel Cycle Engineering Laboratories (NCL), Japan Atomic Energy Agency (JAEA)

* National Institute of Radiological Sciences

Contents

Background

- Location of F-1 site and JAEA-NCL
- JAEA's early response
- WBC schedule and procedure for staff members in NCL
- Applied WBC
- WBC results and discussion
- Future Tasks

Location

Timeline of JAEA's early response against this nuclear disaster (1)

<u>11 Mar.2011</u>

14:46 = Occurrence of the earthquake.

Around 15 = Establishment of the JAEA

emergency response headquarters.

- 21:54 = Announce of the ordered to stay indoors
 - in the area within a 10 km-radius around the site.
- 22:46 = Request to JAEA from MEXT to dispatch of experts to the scene.

Timeline of JAEA's early response against this nuclear disaster (2)

<u>12 Mar.2011</u>

before dawn = The 1st monitoring team left Ibaraki for Fukushima.

6:30 = Arrive at Okuma Off-site Center.

Around 8 = Start the emergency radiation monitoring.

15:36 = The reactor unit 1 was damaged with

hydrogen explosion.

<u>13 Mar. 2011</u>

Eary morning = Start the monitoring by the 2^{nd} team.

WBC counting for staff members

- WBC counting for the staff members engaged in the emergency radiological monitoring were made at their ordinary work site.
- The WBC monitoring program in NCL was started 28 March.
- This presentation is intended for 50 workers who were engaged in the monitoring from 12 March to 11 April and examined until the end of April.
- Stable iodine tablets were not taken by all of them.
- By comparison, the results of the 3 WBC operating staff who stayed in Tokai-mura are used.

Applied WBC – FASTSCAN®

- Canberra, FASTSCAN®
- Vertical Linear Geometry
- Two 7.6 x 12.7 x 40.6 cm (3 x 5 x 16 in.) Nal(TI) Detectors.
- Shielded in all straight-line directions by 10 cm (4 in.) of low background steel.
- ~300 Bq ¹³⁷Cs LLD with person in shield for 2 minutes count under the background affected by the desaster.

Background spectrum of FASTSCAN in NCL

Energy Spectrum of gamma-rays from the worker who detected maximum activity of body content with the WBC

Results of the evaluated CEDs

Period of Monitoring in Fukushima	Number of workers	MAX CED (mSv)	AVG. CED (mSv)
12-14 Mar.	3	0.39	0.34
13-14 Mar.	10	0.70	0.28
14-18 Mar.	7	0.54	0.35
15-20 Mar.	5	0.80	0.30
18-22 Mar.	8	0.25	0.18
Around 4 days of 20 Mar11 Apr.	17	0.54	0.13
TOTAL	50	0.80	0.27
[3/15, Tokai-mura]	3	0.05	0.05

Correlation of estimated intakes between ¹³⁷Cs and ¹³⁴Cs

Summary

Whole body counting for 50 staff members engaged in emergency radiological monitoring during the initial month were made.

- ¹³¹I, ¹³⁴Cs and ¹³⁷Cs were detected in most of the workers
- the internal effective doses of all : < 1 mSv</p>
- the maximum internal effective dose : 0.8 mSv
- the dominant radionuclide for high

exposure case : ¹³¹I

Future Tasks

- The uncertainty in WBC measurement should be analyzed.
- The difference of correlation of intake activities between ¹³⁷Cs and ¹³¹I would be reviewed.
- CEDs of the person who stayed in Tokai-mura (background of Fukushima activities) should be compared with the airborne data.

Analysis of the spectrum

GENIE2K (Canberra Inc.)

Sequence of analysis

- Peak locate: Gamma-M (Peak erosion method)
- Peak area: LSQ-Gaussian fit
- Area Correction: BG-strip
- DL: Currie's MDA

Nuclide Library			
Nuclide	Energy (keV)	Yeild (%)	
K-40	1461	10.7	
I-131	364* 637	81.7 7.2	
Te-132	228*	88.0	
Cs-134	566 605 796.6* 1167.94 1365	23.8 97.6 92.4 1.8 3.0	
Cs-137	662	85.1	

Calibration of Efficiency

BOMAB phantom

Evaluation of the committed effective doses (CEDs)

• CED $[Sv] = A_{intake} [Bq] \times e (50) [Sv Bq^{-1}]CEDs$

e(50) : the dose coefficient taken from ICRP Publ. 78.

- Aintake : estimated intake activity derived by dividing the measured body content by the retention function calculated by the MONDAL3 code.
- The retention function assumed the class of lung solubility with type-F and the particle size with a default AMAD (activity median aerodynamic diameter) of 5 µm for workers.
- On the case of no detection of ¹³¹I, ¹³⁴Cs or ¹³⁷Cs, the MDA value is assigned for more conservative evaluation.