

Accurate quantification of regulated mycotoxins by UHPLC-MS/MS and screening for 200+ mycotoxins in food and feed.

> John Lee Global Food Market Manager

> > **Agilent Technologies**

- secondary metabolites of fungi
 - Fusarium, Aspergillus, Penicillium.
- toxicity:
 - acute toxic, carcinogenic, mutagenic, teratogenic, estrogenic and immunotoxic effects
- resistant to home cooking
- Found in cereals, nuts, dried fruits, spices, grape, coffee, cocoa, fruit juice

Major Mycotoxins

- <u>Aflatoxins</u>
- Ochratoxins (OTA)
- <u>Tricothecenes</u>
- <u>Zearalenone</u>
- <u>Fumonisins</u>
- Patulin

Minor Mycotoxins (100's)

- Ergot alkaloids
- Citrinin
- Cyclopiazonic acid
- Sterigmatocystin
- Monoliformin
- Gliotoxin
- Citreoviridin
- Tremorgenic mycotoxins
- Penicillic acid
- Roquefortine
- 3-Nitropropionic acid
- Fusaproliferin

EU Regulations

US (FDA) Regulations

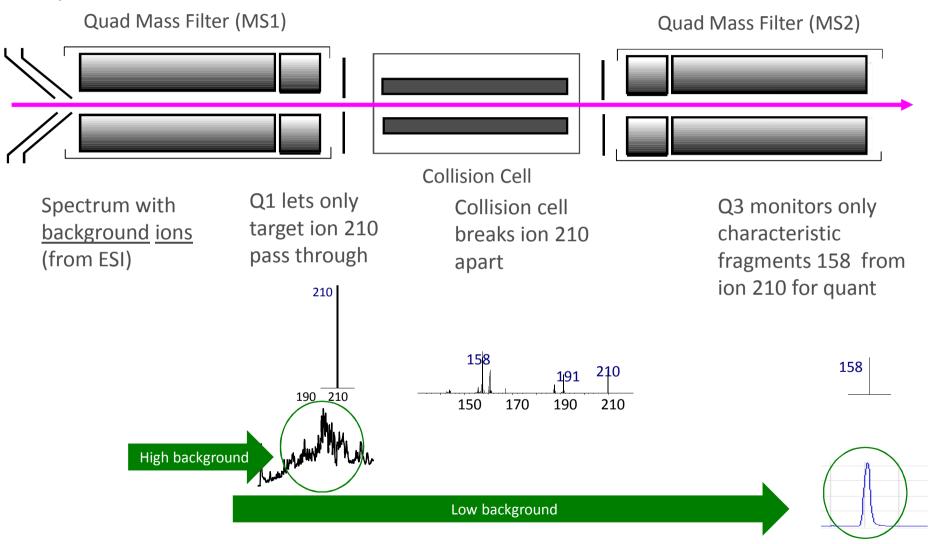
Analytes	MRLs μg/kg (EC Reg. No 1881/2006)	Commodities	
	0.1	processed cereal-based baby food	
Aflatoxin B ₁	2.0-12 sum of aflatoxins: 4.0-15.0	nuts and cereals	
Deoxynivalenol	200 500 - 1750	processed cereal-based baby food processed / unprocessed cereals, bread, pasta, breakfast cereals	
Fumonisin B_1	200	processed maize-based baby food	
Fumonisin B ₂	800 1000 / 4000	maize-based breakfast cereals maize / unprocessed maize	
Patulin	10-50	fruit juices, apple products, baby food other than processed cereal-based foods	
Ochratoxin A	0.5 3.0 / 5.0 10.0 15 / 20 / 80	processed cereal-based baby food processed / unprocessed cereals dried vine fruit spices / liquorice root / extract	
Zearalenone	20 50 75-350	processed cereal-based baby food bread, biscuits, breakfast cereals processed / unprocessed cereals	

Analytes	Limit µg/kg	Commodities
Aflatoxins, sum	20	All foods except milk
Patulin	50	Apple juice, apple juice concentrate, apple components in processed food
Deoxynival enol	1000	Finished wheat products
	2000	degermed dry milled corn products (e.g. flaking grits, corn grits, corn meal, corn flour)
Fumonisins sum of B_1 , B_2 , B_3	3000	cleaned corn intended for popcorn
² , ³	4000	whole of partially degermed dry milled corn products (e.g. flaking grits, corn grits, corn meal, corn flour
Aflatoxin M ₁	0.5	milk

Project in collaboration with IFA Tulln:

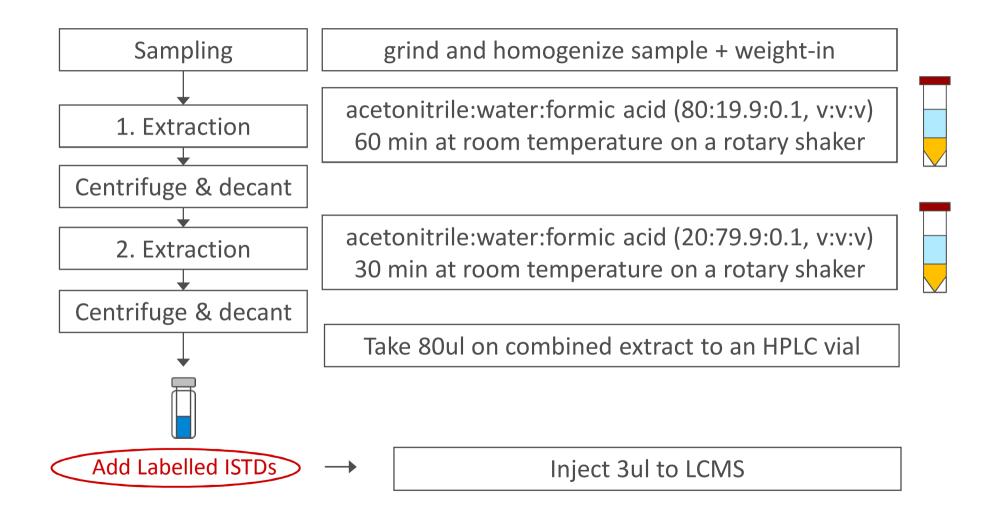
Elisabeth Varga, Michael Sulyok, Rainer Schuhmacher, Rudolf

Krska, Franz Berthiller


Thomas Glauner: Agilent

Project Aim: To create a fast LCMS method covering <u>all</u> mycotoxins regulated in cereals.

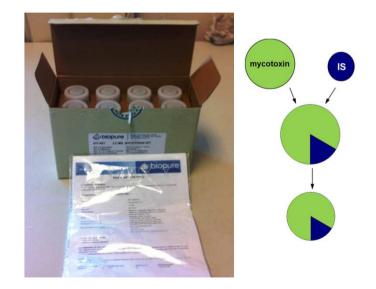
5/1 BOKU Christian Doppler TULLN Forschungsgesellschaft 1290 UHPI C 6490 QQQ Mass Spec



Multiple Reaction Monitoring Principles

Extraction Protocol

Stable Isotope Dilution. Why?

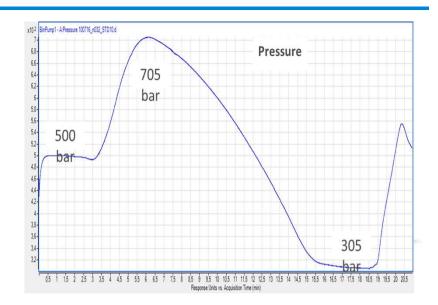

- The challenge
 - Without clean up of extracts, direct comparison to a solvent standard won't be accurate.
 - Clean-up based on immuno-affinity or other affinity are never selective for <u>all</u>.
 - Matrix standards do not account for sample to sample variation.
- Stable isotope dilution assay (SIDA) for LC-MS/MS
 - 11 native mycotoxin standards
 - In mycotoxins as¹³C-labelled compounds : internal standards

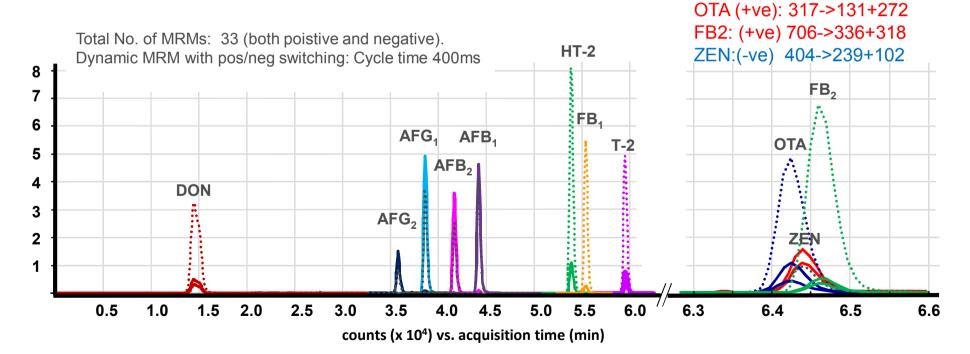
U-[$^{13}C_{17}$]-aflatoxin B₁ U-[$^{13}C_{17}$]-aflatoxin G₁ U-[$^{13}C_{34}$]-fumonisin B₁

U-[$^{13}C_{24}$]-T-2 toxin U-[$^{13}C_{15}$]-deoxynivalenol $\begin{array}{l} U-[^{13}C_{17}]\text{-aflatoxin }B_2\\ U-[^{13}C_{17}]\text{-aflatoxin }G_2\\ U-[^{13}C_{34}]\text{-fumonisin }B_2\\ U-[^{13}C_{20}]\text{-ochratoxin }A\\ U-[^{13}C_{22}]\text{-HT-2 toxin}\\ U-[^{13}C_{18}]\text{-zearalenone} \end{array}$

-enhancement -no matrix effect -suppression -STD

concentration of mycotoxin [μ g/kg]


UHPLC-MS/MS Setup


1290 Infinity UHPLC

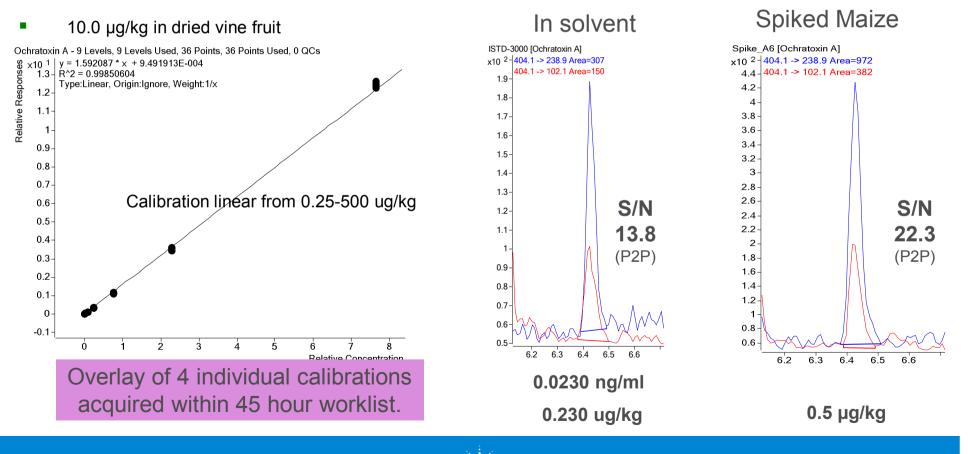
- ZORBAX Eclipse Plus C-18 : 100 x 2.1 mm, 1.8 μm
- Methanol-water gradient: 3ul injection

6490 QQQ Infinity UHPLC

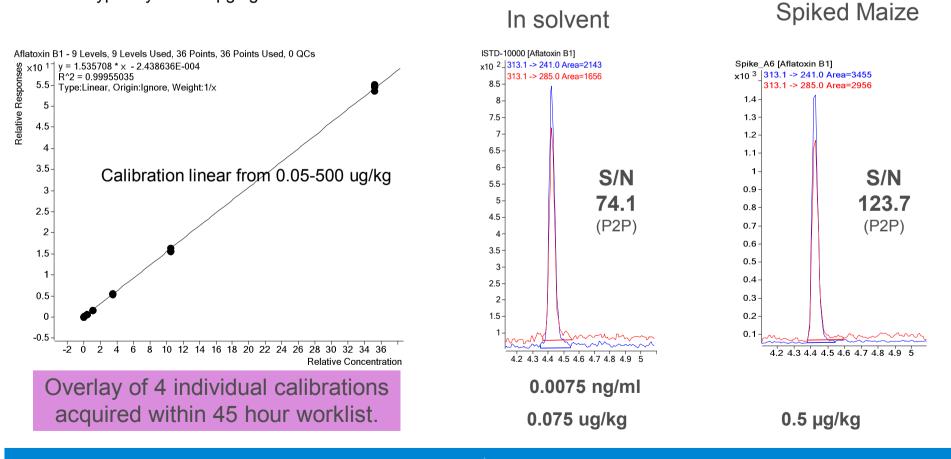
· Single run possible with fast polarity switching

Validation of SIDA method based on Maize

- Does the method perform over the whole range of interest in maize?
- Is the method accurate and precise?
 - Range and linearity of Calibration.
 - ✓ Spiking blank maize (six levels in triplicate).


Results: LOQ's versus requirements

Analytes	Linear range ng/mL	LOQs (maize) µg/kg	MRLs (EC Reg. No 1881/2006)	Commodities
			0.1	processed cereal-based baby food
Aflatoxin B ₁	0.0075 - 74.6	- 74.6 0.05 2.0-12 sum of aflatoxins: 4.0-15.0		nuts and cereals
Deoxynivalenol	0.23 - 225	2.5	200 500 - 1750	processed cereal-based baby food processed / unprocessed cereals, bread, pasta, breakfast cereals
Fumonisin B_1	0.075 - 249	2.5	200	processed maize-based baby food
Fumonisin B_2	0.075 - 251	0.64	800 1000 / 4000	maize-based breakfast cereals maize / unprocessed maize
HT-2 toxin	0.2 - 202	2.0	implementation of	unprocessed cereals and cereal
T-2 toxin	0.023 - 75.4	0.17	MRLs is expected in the near future	products
Ochratoxin A	0.023 – 23.0	0.25	0.5 3.0 / 5.0 10.0 15 / 20 / 80	processed cereal-based baby food processed / unprocessed cereals dried vine fruit spices / liquorice root / extract
Zearalenone	0.076 - 252	1.0	20 50 75-350	processed cereal-based baby food bread, biscuits, breakfast cereals processed / unprocessed cereals


Results: Ochratoxin A

- Challenging compound due to low MRLs
- 0.5 µg/kg in processed cereal based baby food
- 3.0 / 5.0 µg/kg in processed / unprocessed cereals

Results: Aflatoxin B1

- Challenging compound due to low MRLs
 - 0.1 µg/kg in processed cereal based baby food
 - Typically 2 to 12 µg/kg in nuts and cereals

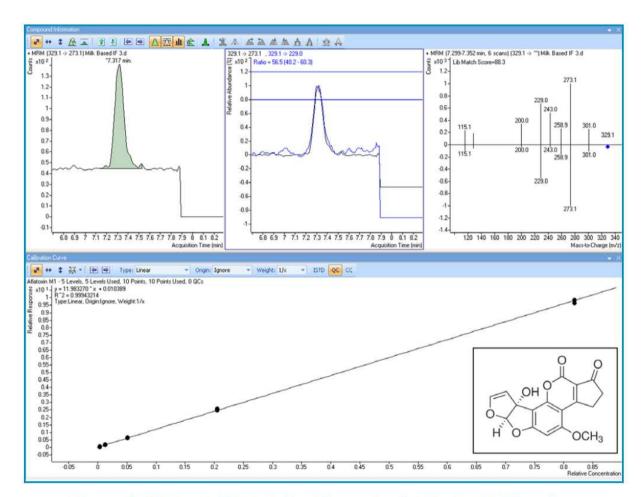
Results – Validation

Analyte	External c R _A [%] ± F			alibration RSD [%] ¹⁾
Aflatoxin B ₁	35	± 4	105	± 6
Aflatoxin B ₂	42	± 4	100	± 4
Aflatoxin G ₁	46	± 5	101	± 5
Aflatoxin G ₂	40	±6	101	± 8
Deoxynivalenol	41	±10	99	±9
Fumonisin B ₁	330	±6	101	± 10
Fumonisin B ₂	181	± 7	88	± 7
HT-2 toxin	134	±6	98	± 7
Ochratoxin A	167	±14	93	± 7
T-2 toxin	118	± 5	99	± 6
Zearalenone	91	± 6	103	± 11

¹⁾ Apparent recovery ± Relative Standard Deviation for triplicate samples and 6 spiking levels

Summary

- Two step extraction (90 minute total)
 - Enhancement of extraction efficiency especially for fumonisins
- UHPLC-MS/MS method with Dynamic MRM
 - Good resolution between aflatoxins
 - Positive & negative ions analysed together even with co-elutution.
 - Segmentation is eliminated through simple Dynamic MRM
- Sensitivity suitable for MRLs even for Baby food.
 - 6490 sensitivity allows for this even though sample is diluted 10 fold in sample preparation.
- Robust
 - 4 orders of linearity for all toxins.
 - Recoveries 88-105% for all mycotoxins. RSD's 5-10%.
- Low running costs
 - Additional price per IS per sample is between 0.01 to 1.40 €
 - Price for all 11 IS per sample 3-4 €


Results for official test materials

No	Apolyto	assigned value	measured value	
NU	Analyte	± STDEV μg kg ⁻¹	± STDEV μg kg ⁻¹	
TM_01	ZEN	83 ± 4.5	86 ± 10	
	Sum AFs	3.79 ± 1.67	4.6 ± 0.2	
	AFB ₁	1.87 ± 0.83	2.3 ± 0.1	
TM_02	AFB ₂	0.51 ± 0.23	0.6 ± 0 03	
	AFG ₁	0.96 ± 0.43	1.0 ± 0 1	
	AFG ₂	0.52 ± 0.23	0.7 ± 0.1	
TM 02	FB ₁	1650 ± 53	1960 ± 198	
TM_03	FB_2	461 ± 16	496 ± 32	
TM_04	DON	1714 ± 64	1660 ± 145	
TM OF	DON	901 ± 55	908 ± 79	
TM_05	ZEN	79 ± 13	84 ± 10	
TM OC	FB_1	2630 ± 370	2300 ± 233	
TM_06	FB_2	690 ± 170	578 ± 38	
TM_07	FB_1	270 ± 55	223 ± 23	
	FB ₂	< 80	55 ± 4	

Customize your mycotoxin method

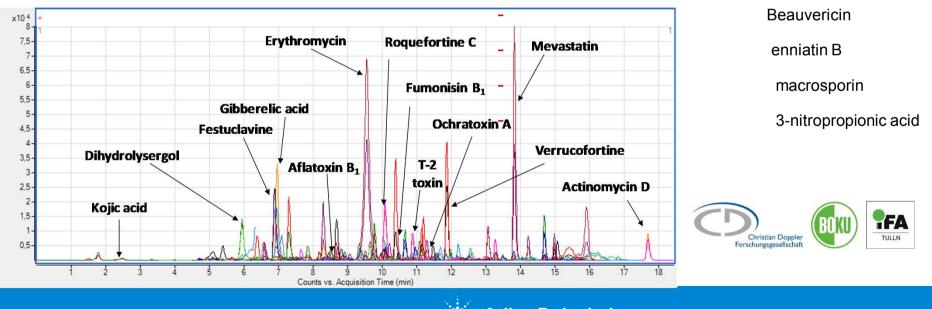
-Other sample types. -Inclusion of Aflatoxin M1 and M2. -Inclusion of MSMS library confirmation.

This LC-MS/MS method has been proven to be effective for the analysis of regulated mycotoxins in **infant formula samples.**

Acceptable Results have been achieved for calibration curves, precision and accuracy.

The use of dMRM with two MS/MS transitions satisfies requirements for positive compound identification, while the use of **tMRM gives** greater confidence in analyte identification without sacrificing sensitivity.

Figure 2. Aflatoxin M1 in Infant Formula, fortified at 0.02 µg/kg.


Agilent Technologies	odified QuEChERS Method Coupling with UHPLC-ESI/QQQ Mass Spectrometry for Simultaneous Determination of Multiple Mycotoxins in Sesame Butter	<u>Conclusion</u>	A methods for simultaneous determination of twenty-six mycotoxins in sesame butter were developed. These compounds cover most of common mycotoxins in cereal products	By combining modified QuEChERS clean-up with UHPLC- QQQ MRM monitoring, the method is more sensitive and more rapid. Compounds can be accurately quantitated within the range of 0.21-21.74 ng/mL(0.7-71.74 ug/kg)	北京检验检疫技术中心 Belung Inspection & QUARANTINE TESTING CENTER
SIOTC 北京检验检疫技术中心 BELING INSPECTION & OURANTINE TESTING CENTER	Modified QuEChERS UHPLC-ESI/QQQ Ma Simultaneous Deter Mycotoxins in		A methods for mycotoxins in a compounds co products	By combining QQQ MRM mc more rapid. Co the range of 0.	

Customize your mycotoxin method

DMRM database for mycotoxins

- Multi-mycotoxin method for 191 mycotoxins and other fungal metabolites has been developed
 - Validated for different nuts: almond, hazelnut, pistachio, and peanut
 - Transitions are shortly available as DMRM database.

- 50 nut samples were screened.
- A naturally contaminated hazelnut sample contained aflatoxins, Alternaria toxins, mycophenolic acid & T2 toxin (found for the first time in hazelnuts).
- >40 different mycotoxins found in all samples
 - hazelnut (36) peanuts (30) almonds (13), pistachios (5).
 - one hazelnut sample with 26 mycotoxins, inc

Thank you for your attention

Anal Bioanal Chem DOI 10.1007/s00216-012-5757-5

PAPER IN FOREFRONT

Stable isotope dilution assay for the accurate determination of mycotoxins in maize by UHPLC-MS/MS

Elisabeth Varga · Thomas Glauner · Robert Köppen · Katharina Mayer · Michael Sulyok · Rainer Schuhmacher · Rudolf Krska · Franz Berthiller Please also see Agilent application note 5991-2808EN

Journal of Chromatography B, 970 (2014) 68–76

Contents lists available at ScienceDirect
Journal of Chromatography B
journal homepage: www.elsevier.com/locate/chromb

Modified QuEChERS method combined with ultra-high performance liquid chromatography tandem mass spectrometry for the simultaneous determination of 26 mycotoxins in sesame butter

Ying Liu^a, Shen Han^a, Meiling Lu^b, Peiyue Wang^a, Jing Han^a, Jinhua Wang^{a,*}

^a Technique Center of Beijing Entry-Exit Inspection and Quarantine Bureau, No. 6 Tianshui Yuan Road, Chaoyang Distr., Beijing 100026, China ^b WW Food Team China Segment, Agilent Technologies, No. 3 Wangjing Road, Chaoyang Distr., Beijing 100102, China

DOI 10.1007/s00216-013-6831-3

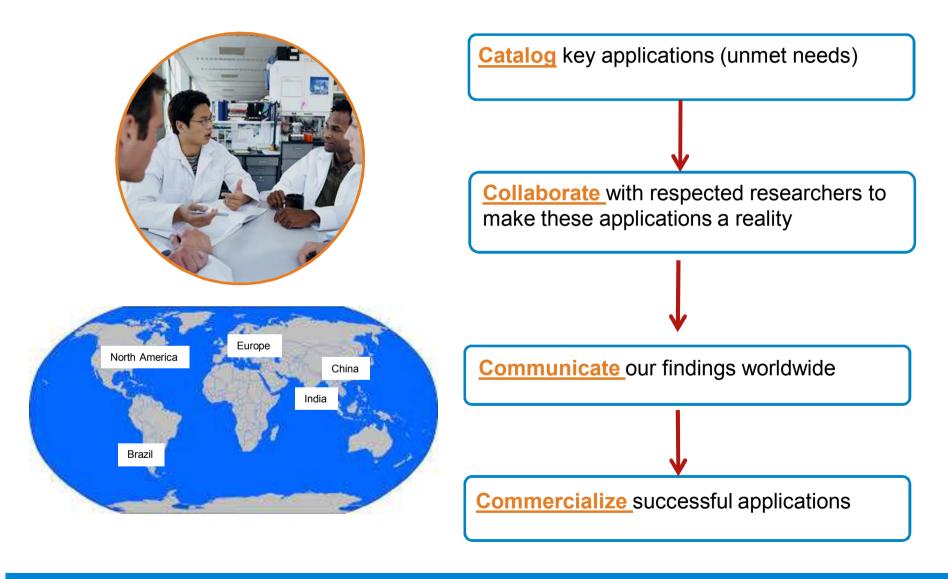
Anal Bioanal Chem

Development and validation of a (semi-)quantitative UHPLC-MS/ MS method for the determination of 191 mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios

Elisabeth Varga • Thomas Glauner • Franz Berthiller • Rudolf Krska • Rainer Schuhmacher • Michael Sulyok

Please also see Agilent application note 5991-4991EN

Received: 2 January 2013 / Revised: 6 February 2013 / Accepted: 8 February 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com



John_Lee2@agilent.com

Agilent's lab-bench to lab-bench market development model

