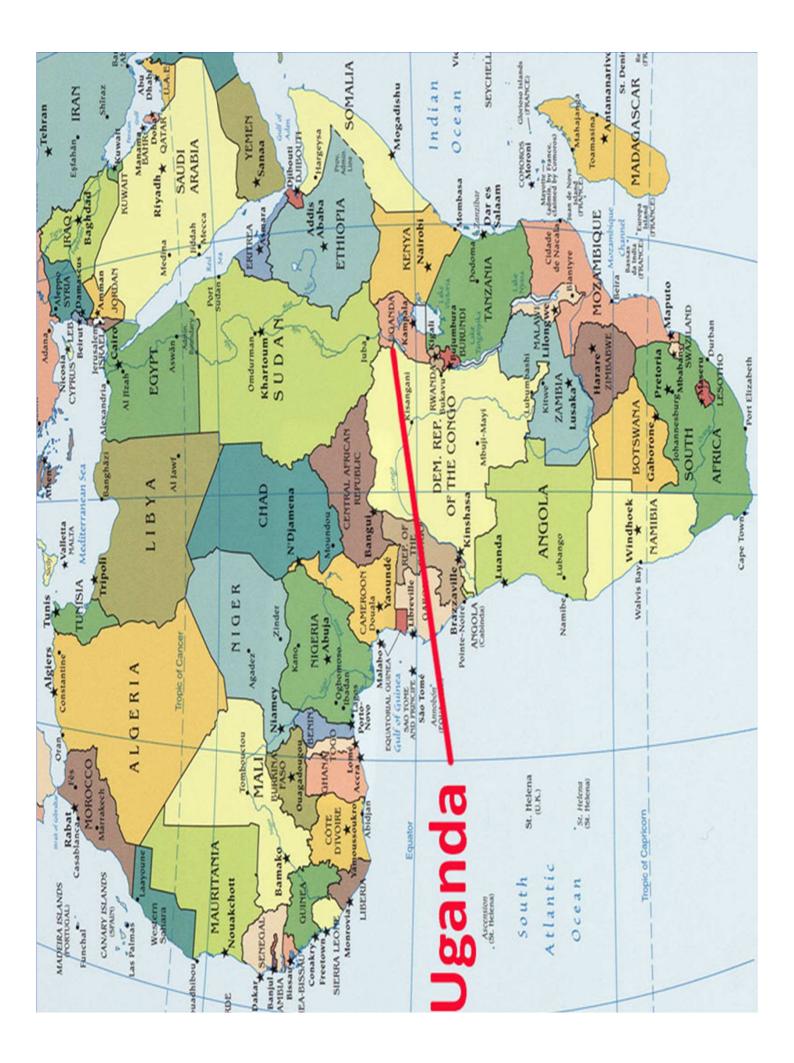
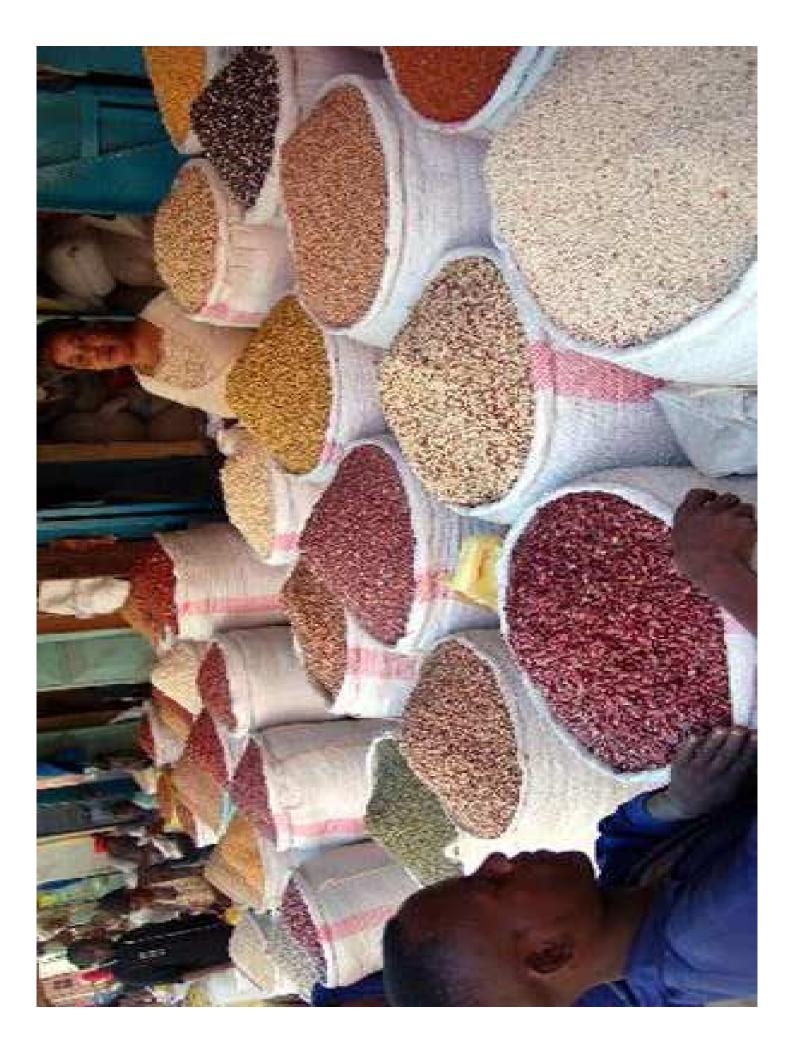
International Symposium on Food Safety and Quality: Application of Nuclear and Related Techniques from 10th -13th NOV 2014

Assessment of Aflatoxin levels in food and animal feeds using ELISA and HPLC: Case study at Uganda National Bureau of standards

Nakibuuka Mary Magdalein Analytical Chemist mary.nakibuuka@unbs.go.ug





About Uganda

- Uganda (East Africa) and is a member of the (EAC), and COMESA.
- Landlocked; Area of Approx. 240,000Sq.km Population of <u>36 million</u> people
- Predominantly Agricultural country where agriculture employs more than 60 % of the population.
- Shares a big portion of Lake Victoria, the world's largest fresh water lake and the source of River Nile

Uganda National Bureau of Standards (UNBS)

- UNBS is Uganda's national standards body
 Mandate: SQMT
- Overall objective:
- ---To promote local industries
- ---Ensure fairness in trade through reliable measurement systems
- ---Protect consumers

UNBS Main Activities

Laboratory testing

- Standards development
- Imports inspection
- Products and systems certification
- Factory inspection & Market surveillance
- Calibration of measuring and testing equipment
- Verification of weights and measures
- Training and consultancy services
- National enquiry point for WTO TBT/SPS agreements
- Standards information and documentation

Food Safety in Uganda

Food safety: Handling, Preparation & Storage so as to prevent contamination which can lead to foodborne illnesses & other health hazards

Food safety assurance depends on the nature and risk associated with the food taking care of good agricultural practices, suitable handling, hygiene, storage, processing, packaging and transportation

Institutional Framework

Sector/ Regulated area	Regulatory institution	Remarks		
Fish	Fisheries Department (MAAIF)	Competent Authority (exports)		
Horticulture	Crop Resources Directorate (MAAIF)	MAAIF works with sector Associations, issues SPS certificate		
Dairy	Dairy Development Authority (DDA)	Implement Dairy Industry Act		
Meat	Animal Resources Directorate (MAAIF), Local Government (DVOs)	District Veterinary officers (DVOs) work with local government, also report to parent Ministry		
Coffee	Uganda Coffee Development Authority (UCDA)	Implement coffee production and marketing regulations		
Cereals, and Pulses	MAAIF, UNBS , Local Government	Monitor Moisture content to avoid aflatoxin		
Hygiene and Health aspects	MOH, Local Government, UNBS	Implement Regulations and standards on hygiene		
Imported food	UNBS	Implement Imports inspection regulations		
Imported live animals and plants	MAAIF	Disease control		

Common mycotoxins in foodstuffs

Mycotoxin	Main causal agent	Foods commonly contaminated
Aflatoxin	Aspergillus flavus, A. parasiticus	All grains, dried fruits
Fumonisin	Fusarium verticillioides	Maize
Zearalenone	Fusarium graminearum	Maize
Ochratoxin	Aspergillus och raceous	Coffee, cocoa
Trichothecenes (T2 Toxins and deoxynivalenol)	Fusarium spp	Cereals (wheat, barley, maize, rice)
Patulin	Penicillium digitatum	Apples

Assessment of Mycotoxins

- Toxic Secondary metabolites naturally produced by fungi/molds
- Contaminate agricultural commodities given that environmental conditions are favorable (Field, handling, storage)
- > Temperature 40-90°F (4-32°C)
- Rel Humidity >70%
- Moisture (22-23% esp in grain)
- > Oxygen 1-2%
- Monitoring necessary due to public health concerns; acute, chronic, mutagenic effects observed in humans and animals

Assessment of Mycotoxins

2004 - <u>Aflatoxin</u>-contaminated maize in Kenya resulted in 317 cases of <u>hepatic failure</u> and 125 deaths, (contamination 4,400µg/kg of Aflatoxin B1 220 higher that set limit)

 2013, February–March - Contamination with <u>aflatoxins</u> results in a milk recall in Europe and a dog food recall in the United States

 Analysis is essential to minimize consumption of contaminated food and feed

Assessment of Mycotoxins

Method development & evaluation is no easy task
 Determining levels for most important mycotoxin in grains at
 µg/kg or ppb is difficult

- Relatively large primary sample representing a Lot
- Reduce sample in bulk & particle size to manageable quantity
- Perform analysis on a small representative portion

Essential to select a suitable optimum protocol for analysis

 Selectivity/specificity, Precision, reproducibility, Accuracy recovery etc

Methods of mycotoxin Detection

- Visual inspection eg in grains, which may locate lots presumed to be contaminated with aflatoxin (black light test);
- Rapid screening procedures to determine the presence or absence of aflatoxins (the fluorometric iodine rapid screening and minicolumn tests);
- Laboratory procedures quantifying the actual amounts of toxin (thin-layer chromatography, gas-liquid chromatography, highpressure liquid chromatography, or ELISA tests).

Methods of mycotoxin Detection

- Biological methods
 - Lab animals
 - Larvae
 - Bacteria
- Physicochemical methods
 - Thin layer chromatography
 - High performance liquid chromatography
 - Gas chromatography
 - Mass spectrometry
- Immunological Methods

Enzyme-Linked Immunosorbent Assay (ELISA) Aflatoxin, Zearalenone, Ochratoxin, DON, T-2

- Detects and quantifies the presence of an antigen (aflatoxin) in a sample using an enzyme labelled toxin and antibodies specific to aflatoxin
- Polyclonal antibodies
- Monoclonal antibodies
- Recombinant antibodies etc

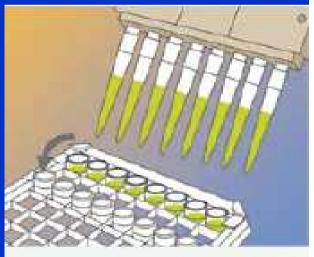
Enzyme-Linked Immunosorbent Assay (ELISA)

- Accurate Results are comparable with published HPLC method
- Highly Sensitive
- Reproducible Consistent results obtained in intra- and inter-laboratory settings
- Other Benefits
- Rapid 10-20 minutes total incubation time
- Stable up to 12 months shelf life
- Easy Simple sample extraction and no clean up steps required
- Cost-effective 48 or 96 breakaway microwell format; minimizes waste and maximizes value
- Convenient Up to 30 minutes reading time after stopping the reaction

AgraQuant Kit Performance characteristics


Mycotoxin	Quantitation Range	Limit of detection		
Total Aflatoxin	1-20 µg/kg	1 µg/kg		
Total Aflatoxin	4-40 µg/kg	3 µg/kg		
Rapid Aflatoxin	4-100 µg/kg	3 µg/kg		
Ochratoxin	2-40 µg/kg	2µg/kg		
Total Fumonisin	0.25-5.0 mg/kg	0.2 mg/kg		

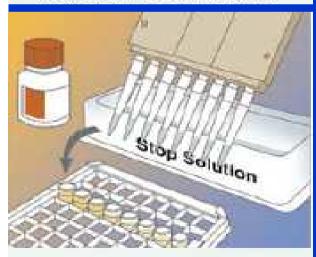
ELISA Methodology (Assay perfomed in plastic microwells coated with anti-aflatoxin antibody)


- Extraction of sample: 50g of sample taken + 10g Nacl; extraction done using 250ml (methanol:water; 70:30v/v) in blending jar
- Filter through Whatman 1 and use 50µL aliquot

1) Add 200 μL conjugate into each color-coded dilution well.

 Add 100 µL standards or samples to the conjugate.

3) Mix well. Transfer 100 µL content to antibody-coated wells. Incubate for 5-15 minutes


ELISA Methodology

 Discard contents from the wells and wash wells with deionized water or buffer solution (5x).

 Tap dry the wells on absorbent paper towel.

 Add 100 µL stop solution into each well.

8) Analyze results using an ELISA reader with 450 nm filter.

6) Add 100 μL substrate into each well, Incubate for 5 minutes.

Absorbance 450nm; Colour development inversely proportional to aflatoxin concentration in sample Y= a. Log (X) + b

High-pressure liquid chromatography (HPLC) Aflatoxins, Fumonisins

- Grains are extracted and the extract fractionated on either normal or reverse phase columns.
- 1.5 3ml HPLC grade methanol was used to elute bound Aflatoxin
- The aflatoxins are detected using either UVabsorbance or fluorescence detectors.
- Can accurately and quantitatively identify aflatoxin B₁, B₂, G₁, and G₁,
- Expensive equipment /invest

High-pressure liquid chromatography (HPLC) Operating Conditions

HPLC column	Column: zorbax Eclipse Plus C18, 4.6x150mm x 5um
Mobile phase	Mobile Phase A: 1L water containing 238 mg KBr and 700µL 4M Nitric acid Mobile phase B; Methanol=50:50; Isocratic
Flow rate	1.0ml/min
Injection volume	20µL
Column Temp	40°C
Fluorescence Detection	λ – Excitation: 365 nm; λ – Emission: 460 nm
Runtime	12min
Mathematical model	Y (peak Area, μV.sec) = a.X–b X=(amount of standard solution, μg/kg) Y=(peak Area, μV.sec)

Results comparison of samples analysed from general market surveillance programmes

Coefficients and accuracy indicators . Model equation Y = a.X–b

Mycotoxin	Equation Coeffici	ents	Accuracy indicators			
	а	a b		R		
Aflatoxin B1	3.04 x 10 ⁵	1.45 x 10⁴	0.995	0.999		
Aflatoxin B2	4.60 x 10 ⁵	2.72 x 10 ⁴	0.999	0.999		
Aflatoxin G1	3.56 x 10⁵	6.05 x 10 ³	0.998	0.998		
Aflatoxin B2	4.36 x 10 ⁵	2.06 x 10 ⁴	0.998	0.999		

Results comparison of samples analysed from general market surveillance programmes

Established Limits of quantification									
Parar	neter		HPLC		ELISA				
Total Aflatoxi	า		0.2		3.0				
Aflatoxin B1			0.4		1.0				
	Recoveries for some quality control samples								
Reference material	Total Afla	toxin	Aflatoxin B	1	Recommended value				
	HPLC	ELISA	HPLC	ELISA					
Flour	r 94%		98% 52%		50-120%				

Results ranges as average/number of samples

ND == Not done NS == Not Specified

									Maximum tolerable Limit (Codex/National standards)	
Product description	No. of samples	Total aflatoxins (µg/kg)	Β1; (μg/kg)	B2; (µg/kg)	M1; (µg/kg)	M2; (µg/kg)	G1; (µg/kg)	G2; (µg/kg)	Total aflatoxins (μg/kg)	Aflatoxin B1
Barley malt	1	0-2.3	ND	ND	ND	ND	ND	ND	NS	NS
Flour	30	0-25	<1-2	<0.5	ND	ND	ND	ND	10	5
Peanut butter	40	2-17	<0.5-3	<0.5	ND	ND	ND	ND	10	5
Therapeutic food	40	3-19	0.2-1	<0.5	ND	ND	ND	ND	NS	NS
Rice	20	0.5-3.5	0.8-3	<0.5	ND	ND	ND	ND	10	5
Groundnuts	19	0-12	<1.0	<0.5	ND	ND	ND	ND	10	5
Poultry feed	10	0-32	<1.0	<0.5	ND	ND	ND	ND	NS	NS
Pig feed	5	0-7	<1.0	<0.5	ND	ND	ND	ND	NS	NS
Milk	40	ND	ND	ND	0-0.2	<0.5	ND	ND	NS	NS

Conclusions

- Both methods are sensitive to provide accurate & reproducible results for the set levels
- HPLC is more suitable to quantify low levels and multiple analytes
- Put systems in place for backward traceability for corrective actions and controls against contamination
- Need to increase scope of analysis such as patulin, Zearalenone, Trichothecenes (T2 Toxins and deoxynivalenol)
- Collect more data for standard development and limits
- Increase testing capacity and monitoring (simpler, more sensitive technologies

Acknowledgements

