

Quantitative Microbial Risk Assessment to Accelerate Adoption of Electron Beam Technologies for Fresh Produce Safety and Quality in the United States

Shima Shayanfar National Center for Electron Beam Research an LAEA Collaborative Center for eBeam technology

Texas A&M University

What's going on???

 23 million US children are either obese or overweight because of poor dietary habits (*IFT*, 2005)

21st Century Reality

Globalization is Changing Everything

- The structure of the global food industry is continually changing
- Global food supply is evolving as food suppliers, manufacturers, & retailers adjust to meet the expectations of consumers
- Global Food Safety Initiative (GFSI)
- Affecting food sourcing
- Affecting food production and organization
- Affecting food ingredients
- Affecting food processing

Reality today

• Food Safety is <u>NOT</u> a competitive advantage!

• Food quality is #1

• Global harmonization

Diminishing regional influence Corporate influence is supreme Either Play or get out!

+ Reserved

Key Question

Food Irradiation Technology

- Most extensively studied technology with over 100 years of data
- Approved in over 60 countries
- Used routinely in the United States, Europe and Asia
 - In the US, irradiated fresh produce increased > 6000% since 2007!!
 - In the US, volume increased over 13% from 2012-2013!!
- <u>NOT ONE</u> irradiated food item has been removed from shelves due to consumer complaints
- Consumer Acceptance is <u>NOT</u> an issue

Widespread Erroneous Information

- Consumers will not buy irradiated foods
- Food irradiation has failed the United States
- European Union nsur s will not accept irradiated foods
- The technology is p
- eBeam irradiation decontaminatio
- eBeam does repenetrate kaged products

st-effective

ffective for surface

Harnessing eBeam Technologies for Cleaning Healing, Feeding, and Shaping this World, and Beyond...

on

Imported Fruits and Vegetables in US by Irradiation

National Center for Electron Beam Research

Food Technology Facility for Electron Beam and Space Food Research Texas A&M University Texas Agricultural Experiment Station

an IAEA Collaborative Centre for eBeam technology

eBeam processing of imported produce at Texas A&M

eBeam Doses and Applications

	Application	eBeam dose
(Sprouting Inhibition	0.1 kGy – 0.2 kGy
	Insect Disinfestation	0.1 kGy – 0.4 kGy
	Protozoan Control	0.3 kGy -0.5 kGy
• •	Delay of Ripening	0.5 kGy – 1.0 kGy
	Controlling Fungi	1.5 kGy – 3.0 kGy
	Bacterial Pathogen Control in foods	1.5 kGy – 3 kGy
	Viral pathogen Control in foods	3 kGy – 10 kGy
	Terminal Sterilization	15 kGy – 30 kGy
	Polymerization	25 kGy – 50 kGy
	Polymer Grafting	25 kGy – 50 kGy
	Polymer Crosslinking	50 kGy – 150 kGy
	Material degradation	500 kGy – 1500 kGy
Ane Mati	Coloring gemstones	>>> 1500 kGy

U.S. Food Vending Business

market vendingwatch.com IFT, 2005

Synergistic effect of eBeam with MAP

Harnessing eBeam Technologi

eding, and Shaping this World, and Beyond...

Lower bioburden was seen in eBeam treated grapes under modified atmosphere

The bioburden of grapes in modified at mospheres was reduced using eBeam technology

Sensory Evaluation in Grapes

EB = 82%		
EB+M= 88		
Air = 88		
MAP = 82		

Grape flavor and texture was highly liked by consumers

eBeam reduced bioburden in modified atmosphere packaged watermelon

• eBeam lowered bioburden levels in MAP watermelon on all days of storage

Watermelon redness not affected by eBeam or modified atmospheres

- E-beam did not adversely affect watermelon redness (lycopene)
- Modified atmospheres did not affect redness of watermelon

Sensory Evaluation in Watermelon

EB 75%

Air 63%

MAP 58%

EB+MAP 44%

75 % of consumers

Watermelon Appearance

Quantitative Microbial Risk Assessment (QMRA)

Risk Analysis Framework

• Involves 4 basic steps

- Hazard identification
- Exposure assessment
- Dose-response assessment
- Risk characterization

QMRA Overview

• Hazard Identification

- Which pathogen(s)?

• Exposure Assessment

- How many pathogens are individuals or populations exposed to?
- What are the contamination scenarios?
- What are the adverse health effects?

• Dose-response Assessment

- What is the relation between exposure and health effects?
- What is the infective dose of the pathogen(s)?

• Risk Characterization

- How does temporal, spatial and inherent variability affect risk?
- Do properties that are unique to the pathogen or infectious diseases (such as person-person transmission or immunity) need to be accounted for?
- What methods are appropriate or needed to characterize risk?

Can eBeam Reduce Infection Risks from Rotavirus and Poliovirus on Lettuce?

Assuming Serving size of lettuce (14 g) contaminated ~ 10 viruses

What would be the reduction in Infection Risks if eBeam pasteurization at 3 kGy is performed?

Espinosa et al., AEM, Feb 2012

Quantitative Microbial Risk Assessment in Lettuce

- standard US single serving sizes of lettuce (14g)
- HAV and NoV virus loads were assumed to be 1, 10, 100 and 1000
 PFU/g of either lettuce or spinach
- Infection risks calculated based on beta-Poisson model for rotavirus and Exponential model for poliovirus
- Single exposure

The beta-Poisson model, $P_i = 1 - (1 + N/\beta)^{-\alpha}$,

 P_i = the probability of infection, N = the number of viruses ingested. The parameters α (0.2531) and β (0.42) represent parameters of the dose-response curve.

eBeam Reduces Infection Risks from Rotavirus and Poliovirus on Lettuce

Quantifying the Reduction in Potential Health Risks by Determining the Sensitivity of Poliovirus Type 1 Chat Strain and Rotavirus SA-11 to Electron Beam Irradiation of Iceberg Lettuce and Spinach

Ana Cecilia Espinosa,^a Palmy Jesudhasan,^b René Arredondo,^a Martha Cepeda,^b Marisa Mazari-Hiriart,^a Kristi D. Mena,^c and Suresh D. Pillai^b

Universidad Nacional Autónoma de México, Laboratoria de Ecologia Quimica, Instituto de Ecología, Mexico City, Mexico^a; National Center for Electron Beam Research, Food Safety & Environmental Microbiology Program, Texas A&M University, College Station, Texas, USA^b; and University of Texas Health Science Center at Houston, School of Public Health, El Paso Regional Campus, El Paso, Texas, USA^c

QMRA of non-O157 Toxigenic *E.coli Reduction by eBeam* on Strawberries

Harnessing eBeam Technologies for Cleaning Healing, Feeding, and Shaping this World, and Beyond...

TEXAS A&M

Take-Home Messages!

- Safety is essential for fresh produce However quality is a value addition
- Food irradiation <u>SHOULD NEVER</u> be used as a clean-up technology
- Food irradiation <u>SHOULD ONLY</u> be used as an integral step of comprehensive GAP, GMP, HACCP plans
- Microbial studies limited to log reductions <u>cannot be an</u> <u>ultimate indication of safety of food</u>
- Risk assessment provides risk management and risk communication tools for decision makers

New Book!!!

Electron Beam Pasteurization and Complementary Food Processing Technologies

Edited by Suresh D. Pillai and Shima Shayanfar

- Combining eBeam technology with
 - Pulsed electric field (PEF)
 - High Pressure Processing (HPP)
 - Infrared
 - Ultrasound
 - Cold plasma
 - Active packaging
 - Modified atmosphere packaging (MAP)

.....coming out January 2015

Shima Shayanfar <u>shayanfar@tamu.edu</u>

http://ebeam.tamu.edu