

USDA-APHIS-PPQ Irradiation Program: Current Status

Karen Sliter

Regional Manager USDA, APHIS, International Services Brussels, Belgium

Outline

- Regulatory summary
- Program types
- Southern states rule
- Process configuration testing
- Other needs
- Phytosanitary irradiation resources

PPQ Mission

Regulate the movement of any commodity capable of harboring invasive, threatening plant pests, including noxious weeds, in order to protect the "agriculture, environment, and economy of the United States"

Facilitate import, export, and interstate commerce of agricultural products and other commodities that pose a risk of harboring certain plant pests

Plant Protection Act of 2000

PPQ Organizational Structure

Field Operations Rebecca Bech, Associate Deputy Administrator Matthew Royer, Executive Director

> Operational Director - South West -AZ, AR, CA, NM, OK, LA, TX -ESF 11; VMO; Data Management Operational Director - South East -DE, GA, PR, NC/SC, TN/KY, VA, FL. AL/MS, MD, WV -SITC; Imports/Exclusion; Plant Germplasm Operational Director - North East -CT/MA/RI, ME, MN, NJ, NY, PA. VT/NH, WI, MI, IN, OH, IL -Predeparture; Biotech; Exports; Trade Operational Director - North West -AK/WA, CO, HI, ID, IA, MO, MT, ND, NE/KS, NV/UT, OR, SD, WY -Detection and Response OD Pest Management/Safety -Pest management; Aircraft Operations; Safety and Health Administrative Support

Osama El-Lissy Deputy Administrator

Phytosanitary Issues Management International Plant Health Standards AQI User Fee Outreach and Communications Chief of Staff

Science and Technology David Kaplan, Associate Deputy Administrator Phil Berger, Executive Director

> Center for Plant Health Science and Technology
> National Clean Plant Network
> PPQ Representative on Climate Change; Plant Health Quadrilaterals Science Collaboration Working Group; Coordinating Office for Science and Technology Assessment; European Phytosanitary Research Coordination
> Administrative Support

Policy Management Jeff Grode, Associate Deputy Administrator Mike Watson, Executive Director

 Resource Management and Planning Staff Professional Development Center -Cooperator Training Unit -Field Operations Training Support -National Detector Dog Training Center • Plant Health Programs -Regulations, Permits, and Manuals -Preclearance & Offshore Programs -Quarantine, Policy, Analysis, and Support -Pest Detection and Emergency Programs -Pest Management -Select Agent Program -Export Services Business Information Systems Strategy and Management Administrative Support

Regulatory Summary

- Market access granted
- Framework equivalency work plan signed
- Trust fund established
- Operational work plan signed
- Commodity-specific addendum signed

Regulatory Summary

- Facility plan approved
- Facility certified
- Importer compliance agreement signed
- Importer permit granted
- Packaging approved
- Process configuration approved

Phytosanitary Irradiation

- APHIS treatments require absorbed doses between 60 and 400 Gy
- FDA limits fresh fruit and vegetable treatments to 1000 Gy
- Irradiated food products must bear the radura

Irradiation Program Types

Preclearance

Offshore irradiation of US imports

Port of Entry

- Domestic irradiation of US imports Domestic Quarantine
- Treatment for domestic movement **Exports**
 - Domestic irradiation of US exports (in development)

Preclearance: India

Krushak

- First overseas facility
- Certified 2007
- Re-certified 2010
- Co₆₀
- Mango

Preclearance: Thailand

Synergy Health Ltd

- Certified 2008
- Re-certified 2009
- Co₆₀
- Mangosteen, longan

Thai Irradiation Center

- Certified 2007
- Recertified 2012
- Co₆₀
- Mangosteen, longan

Preclearance: Vietnam

An Phu Irradiation

- Certified 2009
- Recertified 2012
- Co₆₀
- Dragon fruit and rambutan

Son Son Corporation

- Certified 2008
- E-beam
- Dragon fruit and rambutan

Preclearance: Mexico

Sterigenics

- Certified 2008
- Recertified 2012
- Co₆₀
- Guava and chile manzano

Benébion

- Certified 2011
- Co₆₀
- Guava, chile manzano, mango, and sweet lime

Preclearance: South Africa

High Energy Processing (HEPRO)

- Certified 2012
- Co₆₀
- Grape

Preclearance Totals (in kg)

	India	Mexico	South Africa	Thailand	Vietnam	Total
2007	0	0	0	195,000	0	195,000
2008	276,000	262,000	0	2,440,000	121,000	3,099,000
2009	132,000	3,559,000	0	2,247,000	117,000	6,055,000
2010	94,000	5,672,000	0	1,540,000	754,000	8,060,000
2011	80,000	5,539,000	0	743,000	1,445,000	7,807,000
2012	217,500	8,349,500	16,500	937,500	1,764,500	11,286,500
2013	283,000	9,526,000	16,500	1,060,500	1,967,500	12,853,500

Port of Entry

Sadex Corporation

- Certified 2009
- Sioux City IA
- Pakistan mangos
- E-beam

Southern Tier Rule

http://www.gpo.gov/fdsys/pkg/FR-2012-07-20/pdf/2012-17725.pdf

Southern US: Port of Entry

NCEBR

- Certified 2012
- College Station TX
- Mexican exports
- E-beam

Gateway America

- Certified 2013
- Gulfport MS
- South African persimmon
- Co₆₀

Southern US: Port of Entry

Test shipment

- South African persimmons
- Gateway America
- MOR USA, Inc

Southern US: Port of Entry

Port of Entry issues

- Additional safeguarding at the facility
- Pre-approve packaging
- Process configuration
 approval upon arrival

Process Configurations

Packaging dimensions and orientation are critical when delivering an absorbed dose within a tight range

Dose Mapping

It is important to know what the absorbed dose range will be throughout the configuration

Dose mapping

- Identify areas of high and low absorbed dose
- Determine R_f (reference dose)

Research and Regulatory Needs

- Continue Process Configuration Testing
- Generic Doses
- Quality Studies
- Irradiation Treatment Validation ★
- Modified Atmosphere Packaging ★

Irradiation Treatment Verification

In the event that CBP intercepts a live pest within the pest proof packaging, PPQ needs a tool to verify that an irradiation treatment has occurred.

Ideally, the verification tool would:

- Provide immediate Y/N answer
- Be inexpensive
- Be easy to use
- Not require hazardous reagents
- Have low-maintenance storage requirements
- Work for multiple insect families

Irradiation Treatment Verification

CPHST has just initiated a cooperative agreement with the University of Florida to develop a diagnostic assay to verify that a phytosanitary irradiation treatment was performed using commercially available antibodies to biochemical products of irradiation stress.

MAP is a process that alters the gas composition surrounding a commodity

- •prolongs the shelf-life of perishable goods
- •slows the speed of aerobic microorganisms
- •low O_2 environments are created by displacing O_2 in the packaging with other gases (e.g. N_2 or CO_2)

In the past few years, requests to use MAP for phytosanitary treatments have dramatically increased.

Most MAP creates a low O₂ environment

Respiration slows, resulting in reduced O_2 concentrations in the hemolymph

In hypoxic environments, higher absorbed doses may be necessary to achieve same physiological effects

Commodity	Temperatur	e Humidity	Modified a	tmosphere %
	(°C1	[%]	02	ĊO ₂
Fruit				
Apricot	0-5	90	2-3	2-3
Orange	3-9	90-95	5-10	0-5
Banana	13-15	90-95	2-5	2-5
Persimmon	0-5	90-95	3-5	5-8
Cherry, sweet	0-5	90-95	3-10	10-15
Strawberry	0-5	90-95	4-10	15-20
Apple	0-5	90	1-3	1-3
Blueberry	0-5	90-95	5-10	15-20
Peach	0-5	90-95	1-2	3-5
Pear	0-5	90-95	2-3	0-1
Vegetables				
Asparagus	0-5	95-100	aria	5-10
Broccoli	0-5	95-100	1-2	5-10
Cauliflower	0-5	95-98	2-5	2-5
Cucumber	8-12	90-95	3-5	0
Lettuce	0-5	95-100	1-5	0
Corn, sweet	0-5	95-98	2-4	10-180
Green pepper	8-12	90-95	3-5	2-8
Tomato, partly	8-12	90-95	3-5	0-3
Spinach	0-5	95-98	7-10	5-10

Table 8: MAP recommended conditions for fresh fruit and vegetable

CPHST is funding University of Florida research to characterize the effects of modified atmospheres on irradiation treatments

• Determine whether irradiation in modified atmospheres affects survival or fertility (Lepidopteran pests)

Pest Proof Packaging

PPQ Irradiation Treatment Site

http://www.aphis.usda.gov/wps/portal/aphis/ourfocus/planthealth?1dmy&urile=wcm%3apath%3 a%2Faphis_content_library%2Fsa_our_focus%2Fsa_plant_health%2Fsa_import%2Fsa_quara ntine_treatments%2Fct_irradiation_treatment

Fresh Fruits and Vegetables Import Manual

http://www.aphis.usda.gov/import_export/plants/manuals/ports/downloads/fv.pdf

FAVIR

https://epermits.aphis.usda.gov/manual/index.cfm?ACTION=pubHome

PPQ Treatment Manual

http://www.aphis.usda.gov/import_export/plants/manuals/ports/downloads/treatment.pdf

PPQ Stakeholder Registry

https://public.govdelivery.com/accounts/USDAAPHIS/subscriber/new

United States Department of Agriculture

Final Thoughts & Questions