

<complex-block>

Aérial

Improvement of ESR spectrometer sensitivity and its implication on detection of irradiated food products and dosimetry

Florent Kuntz, Salwa Arahouni and Dalal Werner

→ Technical Assistance

\rightarrow Training

\rightarrow Expert Advice

\rightarrow Applied Research

Parc d'innovation - Rue Laurent Fries BP 40443 - 67412 Illkirch Cedex Tel: +33 3 88 19 15 15 - Fax: +33 3 88 19 15 20

Aérial - La bonne dose d'innovation

Strasbourg - France

www.aerial-crt.com

Since 1985, Aérial's goal is to anticipate tomorow's industrial problems to assist all companies, particularly SME's in all their needs on:

- Introduction/Context
- Improvements in ESR benchtop spectrometers
- Implication on dosimetry applications
- Implication on detection of irradiated food
- Conclusion Further developments

Research & Development and Technical Assistance for the Radiation Processing Industry :

Quality assurance for Radiation Processing :

- Dose measurements (COFRAC accredited laboratory-SSDL)
- IQ/OQ/PQ of irradiation plants
- Expertise/Training

Detection of irradiated food products :

-Accredited laboratory by french ministry of economy, finance and industry

ESR Spectroscopy / Dosimetry

 \rightarrow Concentration of free radicals

 \rightarrow Identification of free radical

Introduction/Context

ESR Spectroscopy / Dosimetry

• ISO / ASTM51607 – 13 : Standard Practice for Use of the Alanine-EPR Dosimetry System

→ Amplitude of ESR Signal

- EN 1786:1996 : Detection of irradiated food containing bone Method by ESR spectroscopy
- EN 1787:2000 : Detection of irradiated food containing cellulose. Method by ESR spectroscopy
- EN 13708:2001 : Detection of irradiated food containing crystalline sugar by ESR spectroscopy

→ Presence/absence of specific ESR Signal

Introduction/Context

ESR Spectroscopy / Dosimetry

Benchtop Spectrometers ...

1991

MS100, 200, 300, 400, Magnettech by Freiberg Instruments

BRÚKÉR

Adani, Active Spectrum, ...

MS5000, Magnettech by Freiberg Instruments

2014

Improvements in ESR spectrometers 1991

MS100 Original version by Magnettech MS200 Microwave amplifier 3 time more sensitive •Adjustment electronics precision and thus better reproducibility MS300 •Measurement resonator higher Q-factor of cavity and flat baseline • Microwave bridge MS400 Transistor oscillator less heat and long term stability Cavity critically coupled for better reproducibility Phase noise reduction Digital field control MS5000 **Digital Signal processing** Very compact housing 2014

Implication on dosimetry applications

Bare Alanine pellets (4 mm diam, 2.3 mm thick, 36 mg)

Packaged Alanine pellets

Traceability during irradiation/measurement Protection of pellet Precise dose location

 \rightarrow dosimeter which is readout with its packaging

Dosimeter

ESR signal

Spectrometer

Calibration curve \rightarrow Dose

Applications	Dose range
SIT	few 10 Gy
Fruits/vegetables	few 100 Gy
Food decontamination	few kGy
Food Sterilization	few 10 kGy

→ ESR/Alanine dosimetry system applicable to all applications

DOE approach for the choice of ESR parameters

B0-field	Sweep		Sweep time	Mod	ulation	MW atten	Gain		
3353.24	[G] 194.00	[G]	30	[s] 700) [mG]	10.0 [dB	9	E 2	🔽 Phase 180
Smooth 0.00	Steps [sec] 4096	•	Number(pas 30	\$]			,		

- Sweep time
- Number of scans (reading time)
- Modulation
- MW power
- Signal analysis (Central Hpp, Integrals, Sum of Hpps, ...)

Implication on dosimetry applications

Dose Gy	Reproducibility* % MS200	Reproducibility * % MS 400
1	-	4,8
2	8,9	5,3
5	4,2	2,2
10	1,9	0,8

* 20 dosimeters irradiated at same dose

Chicken bones

86 Gy to 12 kGy X Rays (100 kV) Electron Beam 2,2 MeV Measurement D0 at room Temperature

 $\approx 40 \text{ mg}$

 $\approx 30 \text{ mg}$

MS200, MS400

MS200, MS400, MS5000

g (signal) = 71,448 .v/B

V: MW Frequency (GHz)B: Magnetic field (mT)

23130 -

Implication on detection of irradiated food

	80-field 3340.49 Smooth 0.00	Swe [G] 116 Step [sec] 409	6.40 [(ps	G] 30	ber(pass	[8]	Modulation 4000		MW atten 16.0	[dB]	Gain 9	E 2	Phase 180	No.
MQAA	າດ						\square	2	258 G	iv				

Aérial - La bonne dose d'innovation

Implication on detection of irradiated food

Detection limit depends on spectrometer, bone

crystallinity, irradiation and storage conditions, ...

Implication on detection of irradiated food

Detection limit depends on spectrometer, moisture content, irradiation and storage conditions, ...

Aérial - La bonne dose d'innovation

- ESR Spectroscopy for dosimetry and detection applications →Need for high sensitivity/reproducibility
- Improvements in Spectrometer technology

→Lower dose measurements with better reproducibility
→Easier analysis of radiation specific signals

• Further improvement

 \rightarrow Low temperature measurement (LN, Pelletier, ...)

 \rightarrow Dielectric cavity to enhance fill factor

→Insert (sample holder) to concentrate Microwave on sample

→ Software to improve signal treatment/analysis (autocorrelation) Aérial - La honne dose d'innovation

.....................................

