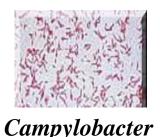


PROBLEMATIC ISSUES


The Center for Disease Control and Prevention (CDC) estimates that 48 million people get sick due to foodborne diseases in USA annually.


In Canada, the foodborne illness is estimated as more than 11 million episodes/year

→ Therefore, controlling of food pathogens in food products are very important.

Foodborne Illness in Canada

13 million cases/year

Salmonella choleraesuis: 630 000 cases/year,

\$ 98 Million

Staphylococcus aureus: 100 000 cases/year

Campylobacter jejuni: 16 000 cases/year

E. coli O157:H7: 13 000 cases/year

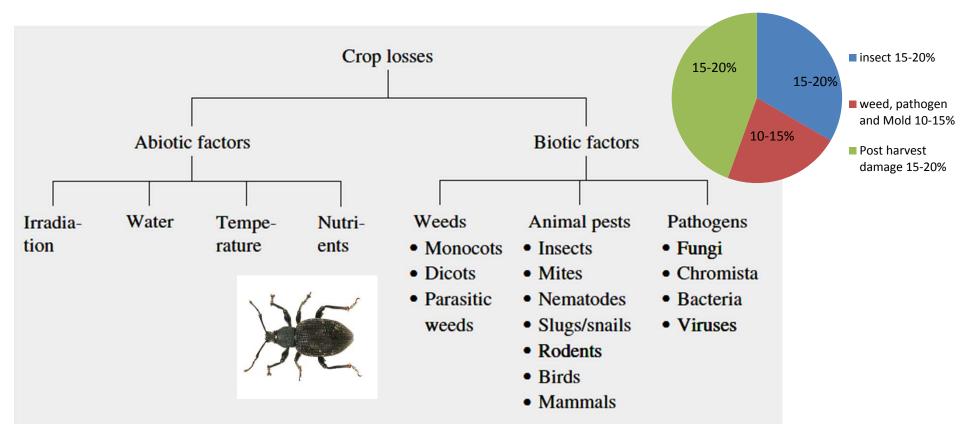
Shigella: 19 000 cases/year

Listeria monocytogenes: 2 800 cases/year

Gélinas, P., 1995, La Fondation des Gouverneurs; (AgricultureCanada, 2006)

Cost of Food Loss in Canada

Meat, Poultry and Fishes: \$200 Million/year


In Canada, 50% of the mortality related to alimentary diseases is due to poultry consumption

Foodborne illness: \$ 1 Billion/year

Crop pests - a serious concern....

- 1. More than 40% crops are destroyed each year due to pests.
- 2.Preventing this loss could feed 3 billion malnourished people. (Pimentel, D, 2009, Agricultural Sciences, Vol II, P-2)

More than 40% of food products could be rejected due to molds contamination

Aflatoxins produced by molds

-Toxic

- Mutagenic

- Carcinogenic

Occurrence of Aflatoxins in Food

Food	Country	Quantity	References
Rice	India	5-50 µg/kg	
	Chin	20 μg/kg	
Maize	USA	10-700 μg/kg	
	Denmark	5-174 µg/kg	Rubsom 1997. Food Chem.
	France	$> 20 \mu\mathrm{g/kg}$	57-67.
Oat/wheat/bardy	Sweden	50-400 µg/kg	
Meat	Egypt	6-40 µg/kg	
Dried figs	UK	10-40 μg/kg	
Cotton seed	Argentina	20-200 µg/kg	
Peanuts	Mexico	700 µg/kg	
	USA	24 μg/kg	Andrea et al. 2012. Food
	Brazil	7.9-1496 µg/kg	Addit. Contam. 276-280.
Nuts shelled	Brazil -	16.5-1972 μg/kg	
Peanuts butter	USA	20-100 µg/kg	
	UK	38-535 µg/kg	
Raw drugs	China	1.29 µg/kg	Bhat et al. 2010. Food Sci.
Medicine plant	China	10-160 µg/kg	Food Safety. 57-81.
Eggs	China	3300 mg/Kg	
Milk	UE countries	28-1012 ng/kg	
	India	50 ng/L	Rodriguez Valasco et al.
Red pepper	Ethiopia	250-525 μg/kg	2010. Food Addit. Contam.
	India	$<10->100 \mu g/kg$	276-280.
Red Paprika	Korea	5.40 µg/kg	Aydin et al. 2007. Food
Wallnut	Malaysia	17.5 µg/kg	Cont. 1283- 1288.
Bakery product		24 μg/kg	Leong et al. 2010. Food
Coated nut products		113.1-514.7 µg/kg	Cont. 334-338.

Irradiation of any food must satisfy two objectives

1- Adequate kill of target micro-organisms and insects

2-Retention of high quality of product

3-Avoidance of radiation-induced sensory detriment

Challenge is to ensure the simultaneous attainment of these goals

Irradiation is a non-thermal technologies are emerging technologies that have the advantage to assure food safety without affecting the nutritional value and when done in combination with other technologies (ex: addition of antimicrobials and modified atmosphere packaging), can protect the physico-chemical and sensorial quality by increasing the bacterial sensitivity.

However, the efficiency of the process should be demonstrated *in situ*

Microorganisms Sensibility

Temperature

Bacteria level

Presence of oxygen

Water availability

Media composition

Other factor to consider

The increase of the consumer demand to eliminate the addition of additives in food system represent a challenge for the scientists

Natural antimicrobials characteristics like essential oils (EOs)

Low solubility in water

High volatility

they need to be encapsulated in appropriate delivery systems to promote their efficiency and assure a control release

The sensorial quality should be protected

Combination of Irradiation and EOs treatment

- ➤ The ionizing radiation affects directly the microbial DNA molecules.
- ➤ The addition of EOs disintegrates the cell membrane, makes the cell impossible to repair the damage incurred by the action of both treatments (Oussalah et al., 2006 J. Food Prot. 69, 5, 1046-1055).
- ➤ Combined treatment lowers the doses required for individual treatment of EOs and Irradiation alone. (Takala et al., 2011, Rad. Phys. Chem., 80, 1414-18).

- Novel Functional Ingredients for Enhancing the Effectiveness of Irradiation in Food Processing
- Novel Encapsulation Technologies to Protect the Functional Ingredients and to Assure a control release of the functional ingredients

Main results of our studies on bacterial and insect radiosensitization using combined treatments

Protection of the natural antimicrobial compounds used

Future opportunities and needs

Method used

Fresh meat or ready-to-eat meat or vegetables or rice

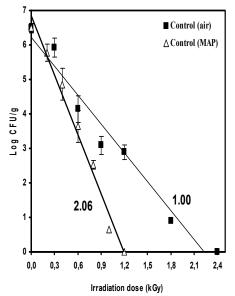
with additive and test organism.

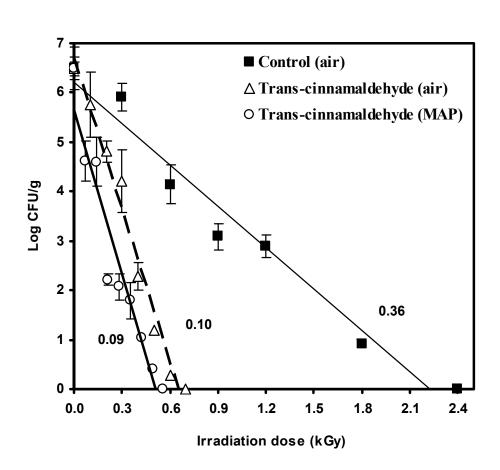
Irradiation to specified doses.

Determine surviving microorganisms or insects as function of radiation dose.

Plot radiation survival curves and calculate D_{10} .

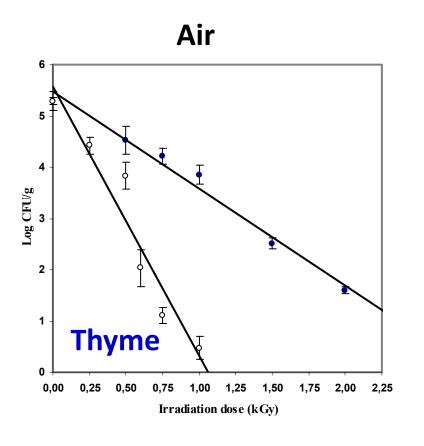
Bacterial Radiosensitivity

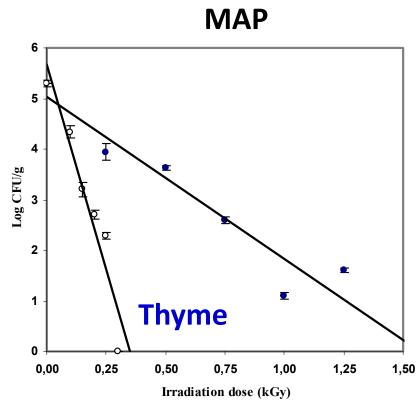

 D_{10} (control) / D_{10} (treatment)



Modified atmosphere packaging (MAP) has been used to control bacterial populations in ready-to-used vegetables

Combination of MAP and irradiation without antimicrobial compounds can increase by 2 times the radiosensitization of Listeria monocytogenes in carrots




Listeria monocytogenes inhibition on ready to eat carrots in presence of natural antimicrobial compounds

HE + Ionisation $D_{10} (air) = 0.1 kGy$ $D_{10} (MAP) = 0.08 kGy$ $D_{10} in presence of HE$ Air = 3.7 et MAP = 4

Salmonella in Beef Bacterial Radiosensitization using spice extracts

Combinaison MAP and carvacrol on ground beef

E. coli

S.TYPHI

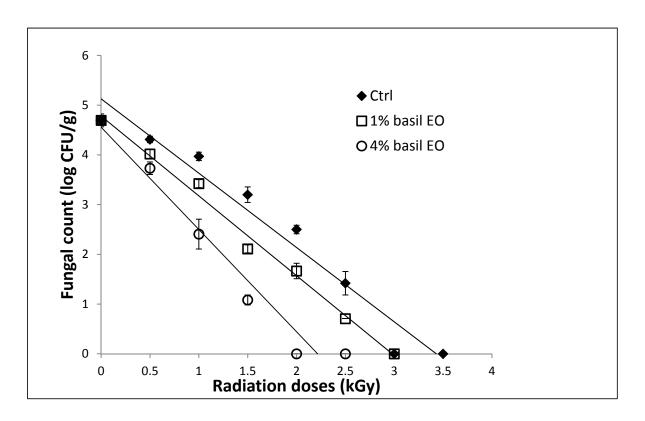
	D10 (kGy)	Relative Sensitivity	D ₁₀ (k G y)	sensitivity
Contrôle	0.126	1.00	0.526	1.00
MAP	0.086	1.9	0.221	4.15
Ess. oils Air	+ 0.055	2.29	0.254	2.2
Ess. oils MAP	+ 0.046	2.74	0.053	9.92

1. MAP: $60\% O_2 - 30\% CO_2 - 10\% N_2$;

Ess. oils mix: Carvacrol (1 %) + TSPP(0.1%)

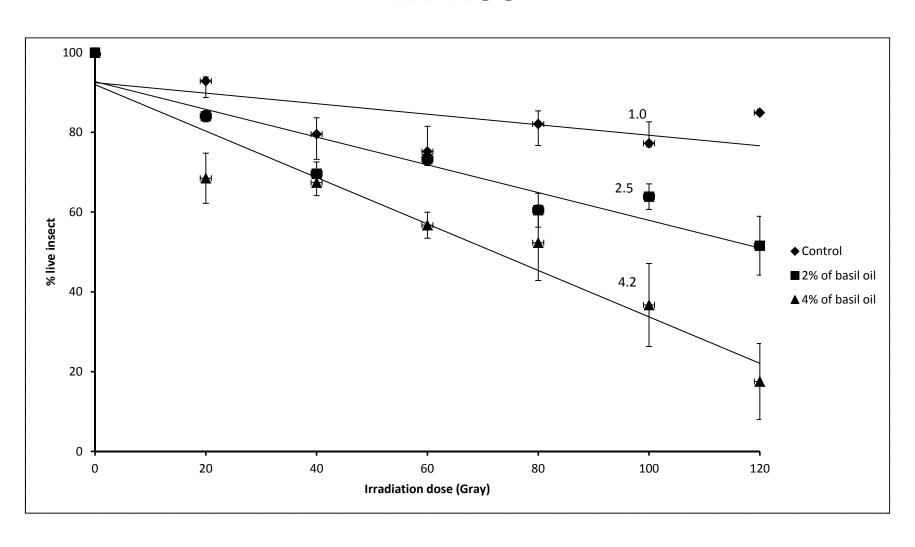
3. Relative Sensitivity = ratio du D_{10} (contrôle) : D_{10} (treatment)

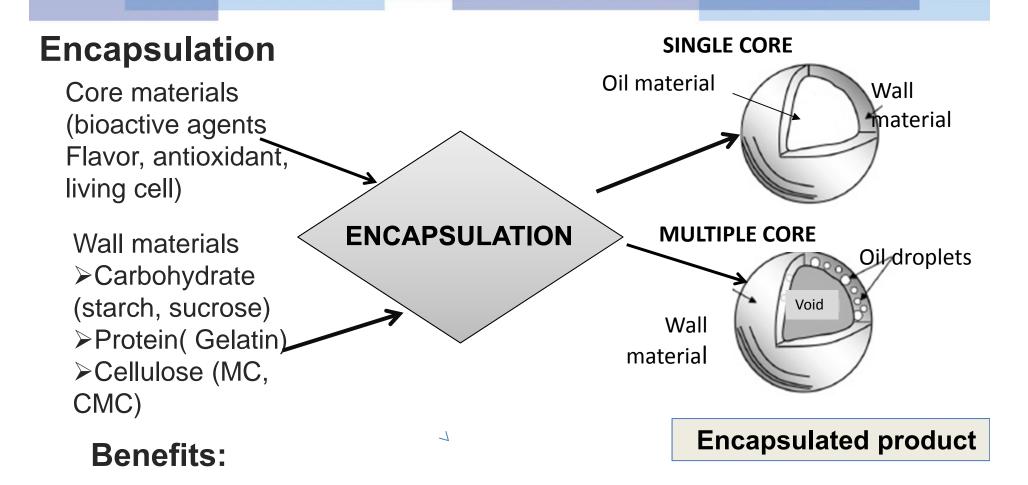
Shelf life extension of ground beef mesophilic aerobic count (log 10)


Treatment/Day	1	3	7	14
AIR				
0 kGy	7.3	>7	>7	>7
1.5 kGy	2.6 (4.7 log reduction)	3.5	4.3	>7
0 kGy Mustard 0.075%	7.4	>7	>7	>7
1.5 kGy Mustard 0.075%	2.6	2.4	3.8	>7
MAP				
1.5 kGy	<10	<10	<10	<10 even after 28 days of storage
0 kGy Mustard 0.075%	5.6 (1.7 log reduction)	7.1	>7	>7
1.5 kGy Mustard 0.075%	<1	<1	<1	<10 even after 28 days of storage

Listeria content in ready to eat carrots

Treatment	Day 1 (Log CFU/gr)	Day 7 (Log CFU/gr)
Control	3	3
0.25 kGy Air	2.6	2.4
0.50 kGy Air	1.9	1.15
0.25 kGy MAP	1.75	1.4
0.50 kGy MAP	<1	<1
Cinnamon 0.25 kGy Air	2.59	1.72
Cinnamon 0.5 kGy Air	2.04	<1
Cinnamon 0.25 kGy MAP	2.1	<1
Cinnamon 0.5 kGy MAP	<1	<1


In situ Irradiation Experiment to Eliminate A. niger in rice


Relative sensitivity (RS) of *A. niger*

The D_{10} value decreased to 0.49 kGy and RS increased 1.38 times by combining 4% basil EO and irradiation treatment (p \leq 0.05) as compared to control.

Radiosensitization of *Sitophilus oryzae* in rice

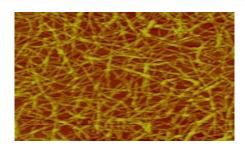
- ➤ Prevents degradative reactions
- > Allows mixing of incompatible components
- Ensures control release to the target site.

Natural polymer in agriculture.

- Natural polymers such as starches, chitosan, cellulose derivatives can be convenient for agricultural sector.
- Challenge
 The properties of these polymers
 do not fit specific applications.
- Alternative Blending, mixing and modifying with other polymers can regulate their morphologies and properties easily and efficiently.

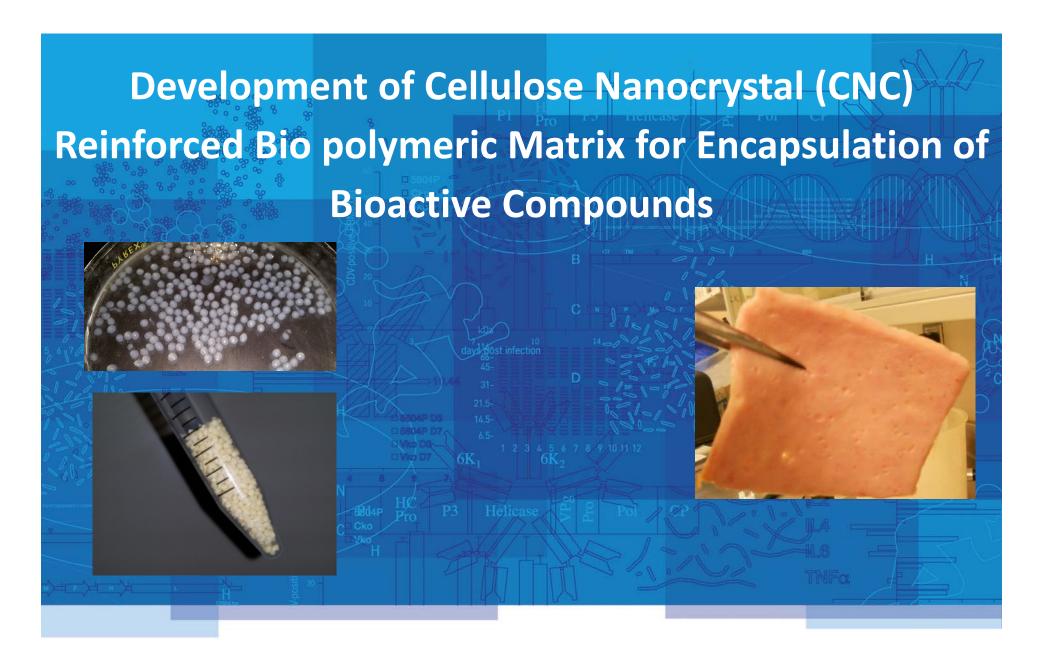
(Puoci, et al., 2008, Am. J. Agric and Biol. Sci. V.3. 299-314)

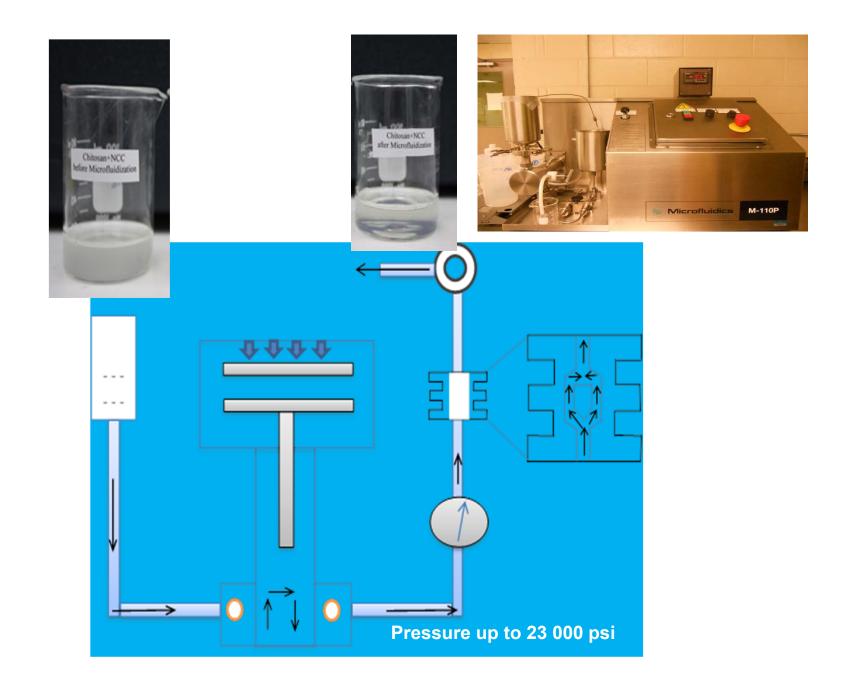
Active coating and Nanoscale encapsulation have been proposed as


Innovative approaches

Nanoscale encapsulation of natural antimicrobial compounds inside the active coating formulation can increase the concentration of bioactive compounds in food areas where microorganisms are preferably located

The active coating can be applied on vegetables to minimize or prevent the growth of pathogenic microorganisms


Crystalline nanocellulose (CNC)


Fillers for thermoplastic polymers due to their outstanding mechanical and barrier properties.

CNC

➤ Can increase the stability of encapsulated bioactive agents into polymer matrices and ensure controlled release.

Essential Oils as antimicrobial compounds

- > Aromatic oily liquids
- > Extracted from plant
- Complex mixtures of comparatively volatile substances
- Widely used as an antimicrobial compounds against pathogenic bacteria

Origanum Compactum

Carvacrol

Thymol

Cinnamomum Cassia

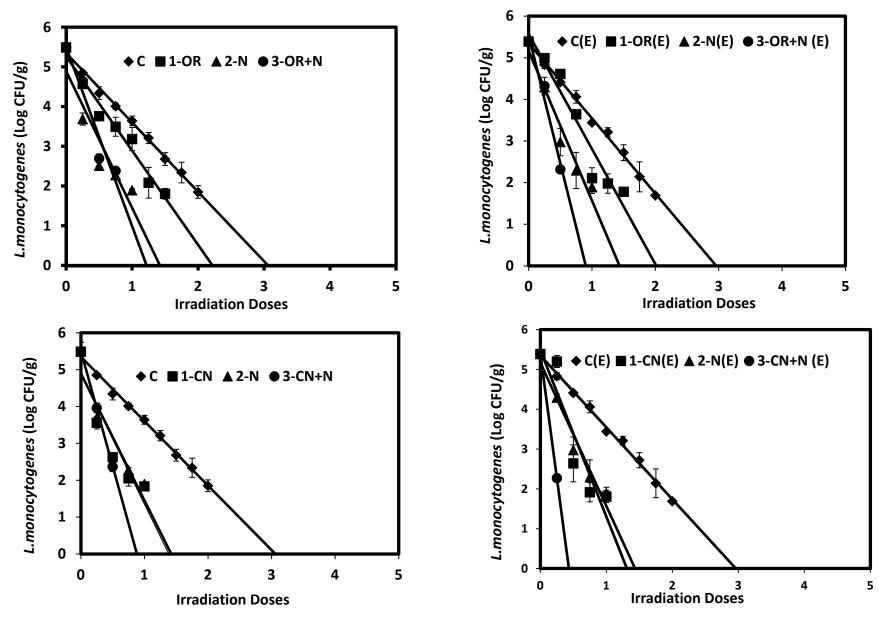
Trans-cinnamaldehyde

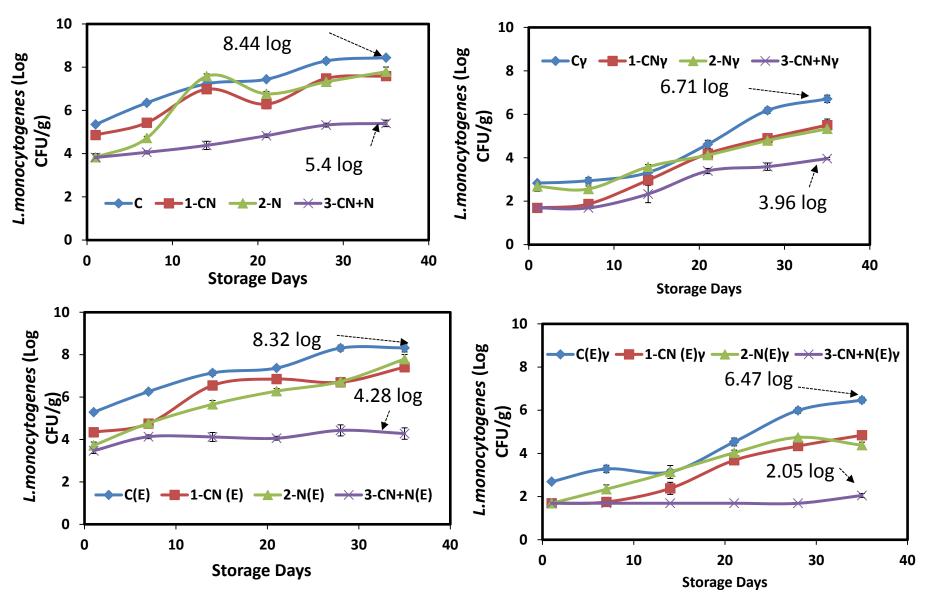
Nisin as an antimicrobial compound

- ➤ An antimicrobial peptide and produced from *Lactococcus lactis*
- Recognized as GRAS by the United
 States Food and Drug
 Administration (FDA)
- Showed antimicrobial activity against pathogenic bacteria (Listeria monocytogenes)

Cutter and Siragusa, 1997. Food Microbiology 14: 425–430.

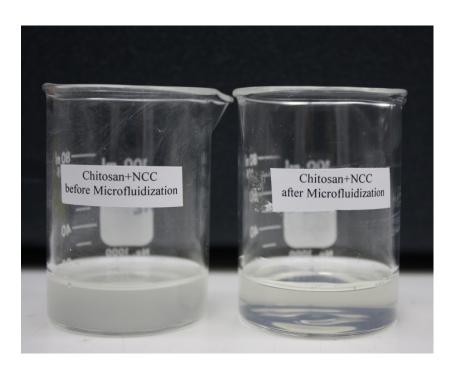
In situ Analysis (Ready-to-eat, RTE Meat)

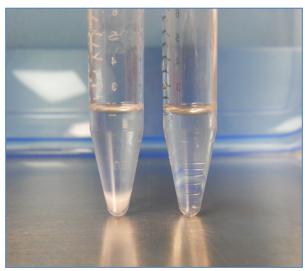

- > Ground lean pork
- ➤ Sodium chloride (13.95g), triphosphate (4.59g), erythorbate (0.80g) and nitrite salt (0.83g)
- > Cooked at about 1hr at 162.7° C

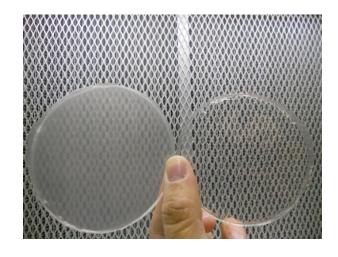

Without microencapsulated ham

Microencapsulated nisin In alginate/CNC based polymer

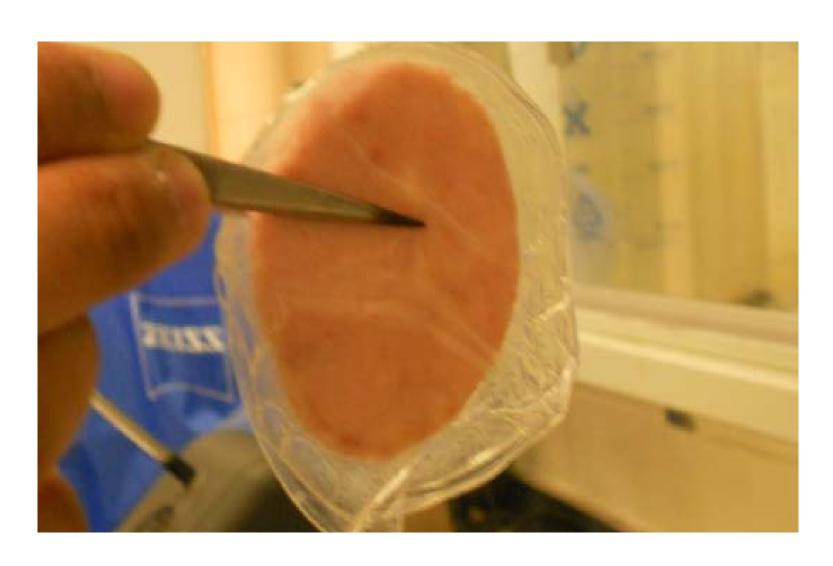
Radiosensitization of *L.monocytogenes* on RTE meat containing non and microencapsulated *Origanum Compactum* (0.25% w/v), *Cinnamomum Cassia* (0.25% w/v) and Nisin (0.125% w/w)

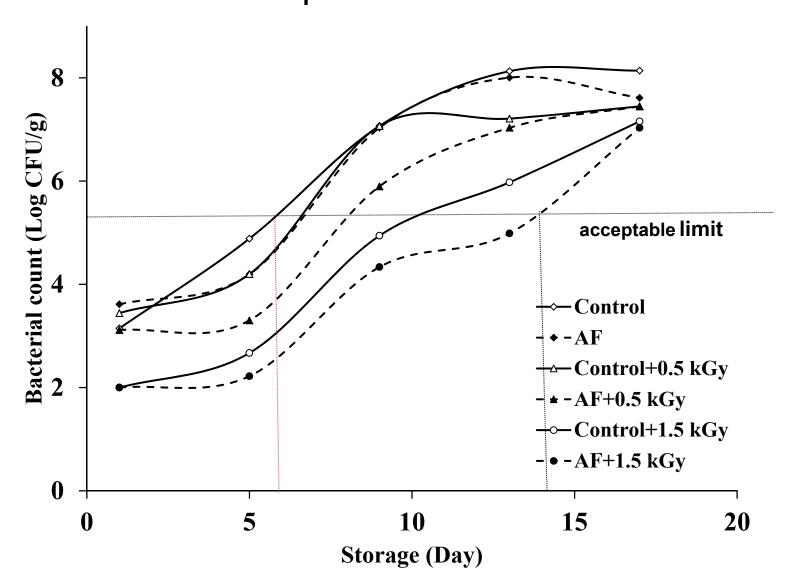

L. monocytogenes with and without microencapsulated essential oils and nisin with gamma irradiation (at 1.5 kGy) on RTE meat during storage against L.monocytogenes.


D₁₀ and **Radiosensitivity (RS)** for non and microencapsulated antimicrobial microbeads against *L.monocytogenes**


	D ₁₀ (kGy)	RS	
С	0.57±0.031 ^a	1±0.00 ^a	
OR	0.49±0.044 ^b	1.16±0.09 ^{ab}	
CN	0.26±0.035 ^d	2.18±0.28 ^{cd}	
N	0.29±0.018 ^{cd}	1.94±0.06 ^c	
OR+N	0.20±0.036e	2.91±0.74ef	
CN+N	0.16±0.001 ^e	3.57±0.15 ^g	
C(E)	0.55±0.015 ^a	1±0.00 ^a	
OR(E)	0.34±0.048 ^c	1.65±0.30 ^{bc}	
CN(E)	0.21±0.028e	2.62±0.34 ^{de}	
N (E)	0.29±0.034 ^d	1.95±0.26 ^c	
OR+N(E)	0.16±0.003e	3.40±0.17 ^{fg}	
CN+N (E)	0.08±0.002 ^f	6.89±0.30 ^h	

^{*}Values are means \pm standard deviations. Means with the same letter are not significantly different (P > 0.05).


Microfluidisation of chitosan-NCC based solution and film formation

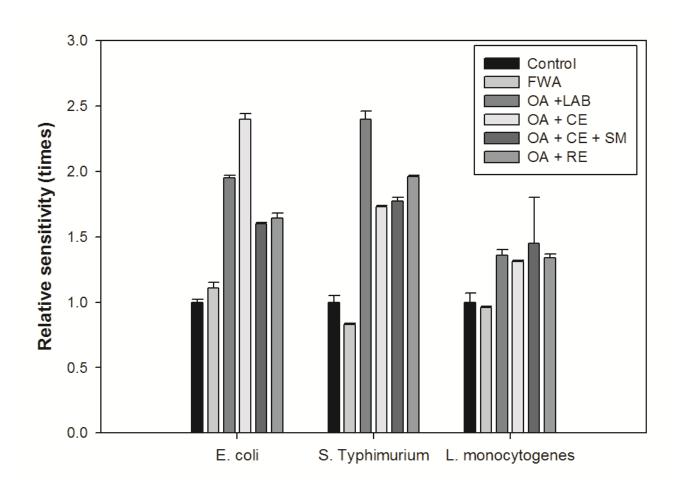


Active chitosan-NCC based film

Effect of active films based on chitosan-NCC and irradiation on mesophilic bacteria in RTE meat

Coating application on ready to eat vegetables and irradiation treatment

D₁₀ values of selected pathogens and total microflora in broccoli florets coated with active coating


Bacteria	Control	OA/LAB metabolites	OA/FE	OA/FE/SM	OA/SE
L. monocytogenes	0.4	0.29	0.3	0.27	0.3
E. coli	0.38	0.2*	0.16*	0.24	0.23
S. Typhimurium	0.50	0.2*	0.29*	0.28*	0.25*
Aerobic flora	0.57	0.36*	0.32*	0.38	0.33

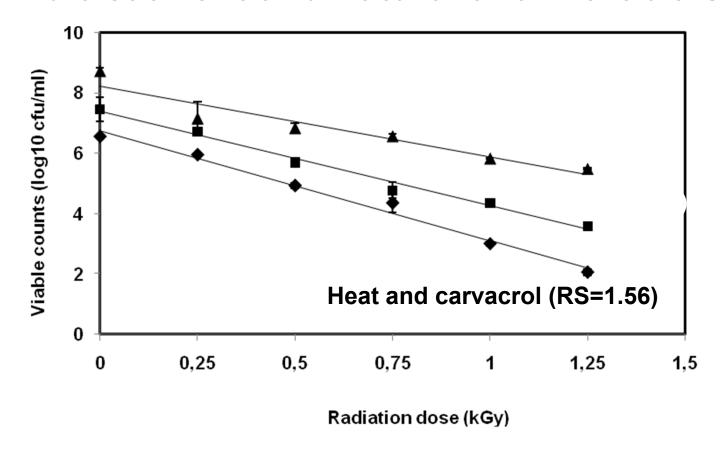
OA: organic acid mixture; LAB: mixture of LAB ferment; FE: fruit extracts;

SM: spice mixture; SE: spice extract

Irradiation treatment from 0 to 3.3 kGy

Bacterial radiosensitization irradiation and active edible coatings

Takala et al., 2011 J. Food Prot. 74, 7, 1065-1069.


Effect of bioactive coating in combination with modified atmosphere packaging and gamma irradiation (0.25 kGy)

on population of *E. coli* on green beans samples during storage at 4 °C

	Day 1	Day 3	Day 5	Day 7	Day 9	Day 11	Day 13
Control	2.98 ^A a	3.03 ^A a	3.10 ^{AB} _a	3.14 ^{AB} _a	3.18 ^B a	3.41 ^c _a	3.95 ^D _a
MAP	3.02 ^A _a	3.19 ^A a	3.05 ^{AB} _a	3.01 ^{ABa}	2.80 ^B _b	2.98 ^{AB} _b	3.01 ^{AB} _b
Coating (air)	2.45 ^{AB} _b	2.15 ^A _b	2.57 ^B _b	1.40 ^c _b	1.25 ^c _c	ND	ND
Coating+MAP	2.64 ^A _b	2.59 ^{AB} _c	2.30 ^B _b	1.66 ^c _b	1.19 ^D _c	ND	ND
γ (air)	1.71 ^A _c	1.26 ^B _d	1.18 ^B _c	ND	ND	ND	ND
γ +MAP	1.62 ^A _{cd}	1.45 ^B _e	1.19 ^c _c	ND	ND	ND	ND
γ+coating (air)	1.30 ^A _d	1.35 ^A _{de}	1.25 ^A _c	ND	ND	ND	ND
γ+coating+MAP	ND	ND	ND	ND	ND	ND	ND

Values are means \pm standard deviations. Means with different lowercase letters within the same column are significantly different ($P \le 0.05$), while means with different uppercase letters within each treatment lot are significantly different ($P \le 0.05$)

Inactivation curve of *B. cereus in culture media* by gamma irradiation in combined treatments with mild treatment and natural antimicrobials

Control untreated cells (▲), cells treated with mild heat for 10 min at 45°C (■), cells treated with 312 ppm of carvacrol for 10 min at 30°C (♦).

CONCLUSIONS

Microorganisms and pests have the capability to develop significant increase of the relative radiation sensitivity (D_{10}) value in presence of natural antimicrobials and/or in combination with heat treatment.

Combination of irradiation and natural antimicrobials can be used to control pathogens, fungi and insect pest, in order to increase the shelf life and protect the safety and the quality of food.

Active edible coating or packaging can also act in synergy with irradiation treatment to protect food quality and safety but assure a better control of the safety during the whole storage.

Thank you

Monique Lacroix, Ph.D.
Professor
Director
Research laboratories in sciences applied to food
Canadian Irradiation Centre
INRS-Institut Armand-Frappier
531 des Prairies
Laval H7V 1B7 Qc Canada
Tel 1 450 687 5010 ext 4489
Fax 1 450 686 5501
Email: monique.lacroix@iaf.inrs.ca

