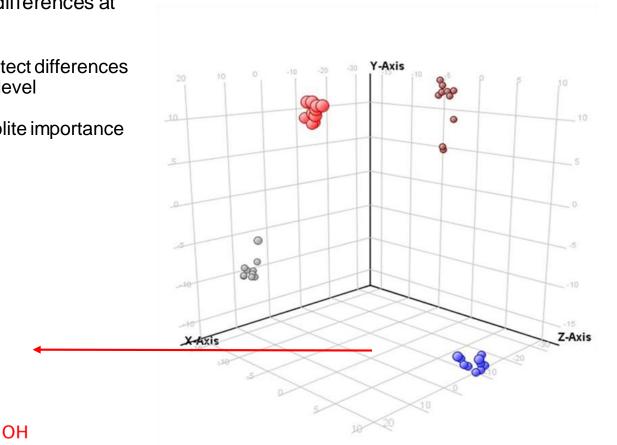


Modern Mass Spec tools for food profiling to ensure authenticity and quality

Dr. Joerg Riener EMEA GC/MS Food Segment Scientist

Chemometric Multivariate Analysis


 NH_2

Goal: Detect observed phenotype differences at the chemical level

Multivariant analysis is a means to detect differences between phenotypes at the chemical level

Multivariant analysis can rank metabolite importance to phenotype

Does not explain underlying biology

Phosphoguanidinoacetate

LC/MS and GC/MS systems are already used to identify organic and inorganic contaminants in feed, food and other food stuff.

Chemometric – Un-Targeted or Targeted Analysis

Un-Targeted - Looking for all metabolites and chemicals

- Data is acquired in full scan mode
- Metabolite tracking uses retention time and EI spectra
- Statistics used to find interesting metabolites (features)
- Features must be identified to make biological sense

Targeted - Looking for known metabolites only

- Data is acquired in SIM (MS) or MRM (MS/MS) mode
- Absolute quantitation Need external and internal standards
- Statistics used to confirm interesting metabolites

Sample Analysis – GC/MS

GC/MS – Best for routine analysis

Advantages

- No ionization suppression
- Identification by EI searchable libraries

Disadvantages

- Volatile analytes derivatization required
- Molecular ion often missing

GC/MS/MS – Best for targeted

Advantages

- Lower detection limits
- Greater selectivity

Disadvantages

- Volatile analytes derivatization required
- Molecular ion often missing

Classes of chemicals and the analytical techniques with which they are most

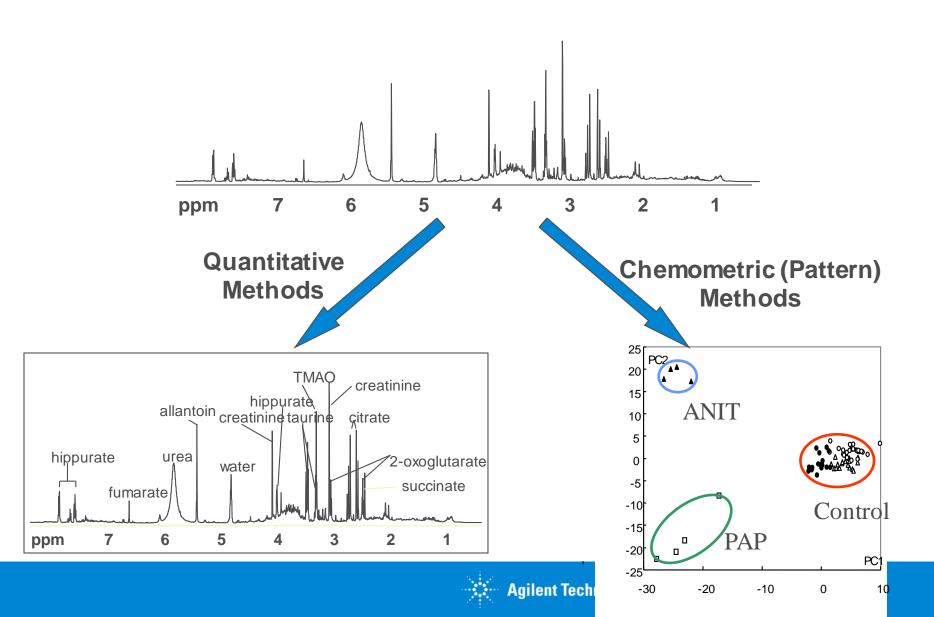
compatible _{GC}

Alkylsilyl derivatives Eicosanoids Essential oils Esters Perfumes Terpenes Waxes Volatiles Caratenoids Flavenoids Lipids

Alcohols Alkaloids Amino acids Catecholamines Fatty acids Phenolics Polar organics Prostaglandins Steroids

LC

Organic Acids Organic Amines Nucleosides Ionic Species Nucleotides Polyamines


overlap

Less Polar

More Polar

2 Routes to Chemometric

Main Challenge

A CASE STUDY ON CHAMOMILE FLOWERS AND OILS

What is Chamomile?

Chamomile: one name, different botanical species

German Chamomile

Matricaria chamomilla L.

Roman Chamomile

Juhua

Chamaemelum nobile (L.) All. Chrysanthemum morifolium Ramat.

All chamomile species belong to the same Asteraceae (Compositae) family but different genera

Why Is Chamomile Important?

Beneficial Properties

Commercial Products

- Anti-inflammatory
- **Hay fever**
- Wound healing and burn relief
- Gastro-intestinal disorders
- **Tooth ache, ear ache**
- Ulcers

- Antibacterial
- Antifungal
- Infections
- Common

cold

Laryngitis

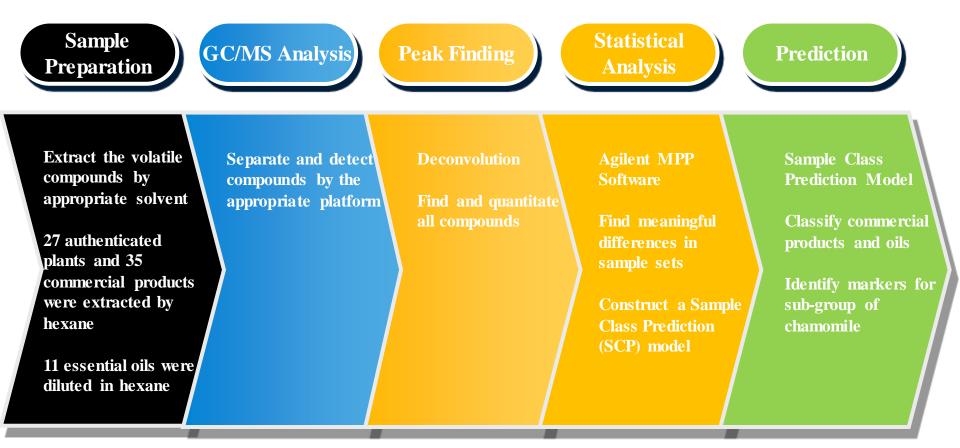
- Anxiety relief
- Sleep disorders
- Cardiovascular diseases
- Muscle spasm
- **Rheumatic pain**
- Arthritis

- Cosmetics
- Aromatherapy
- Teas
- Lotions
- Herbal Beer
- Gargles
- Shampoos

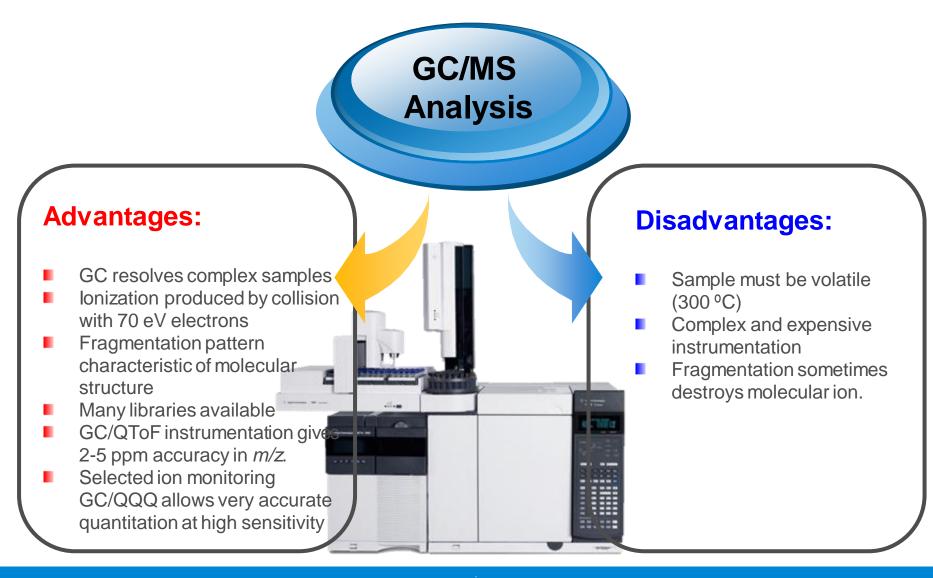
Why Did We Study Chamomile?

Many products, few clinical studies on humans

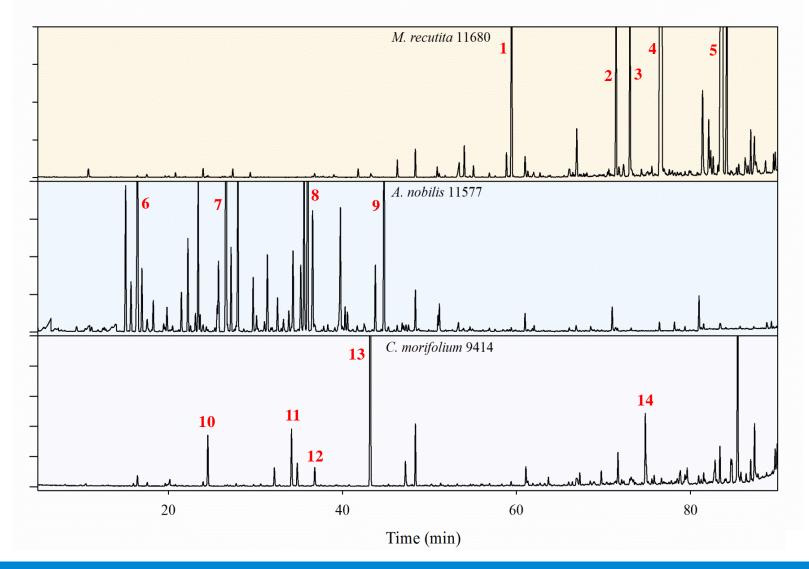
Reported adverse reaction, allergies, skin rash, throat swelling, drowsiness and anaphylaxis

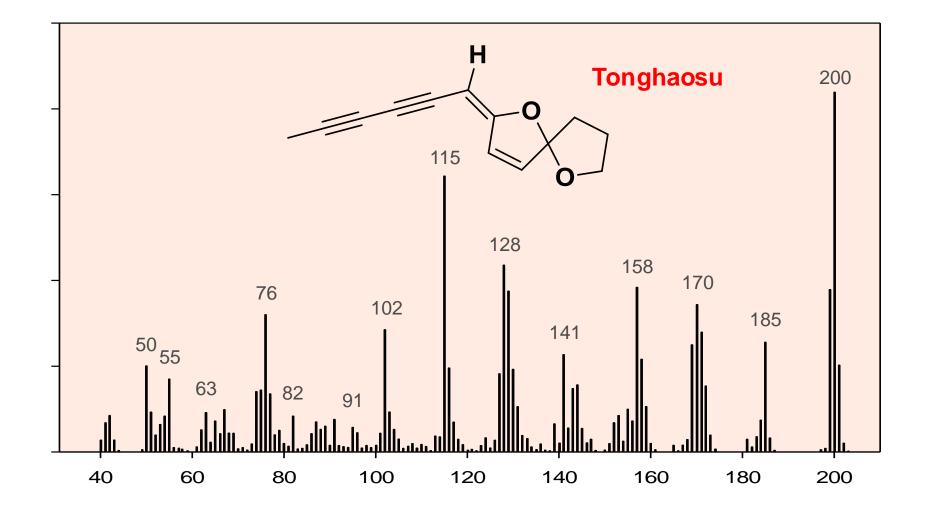

Poor definition of chamomile

Potential safety issues with commercial products and dietary supplements


Detection of adulteration/substitution in commercial products

What Workflow Did We Use?





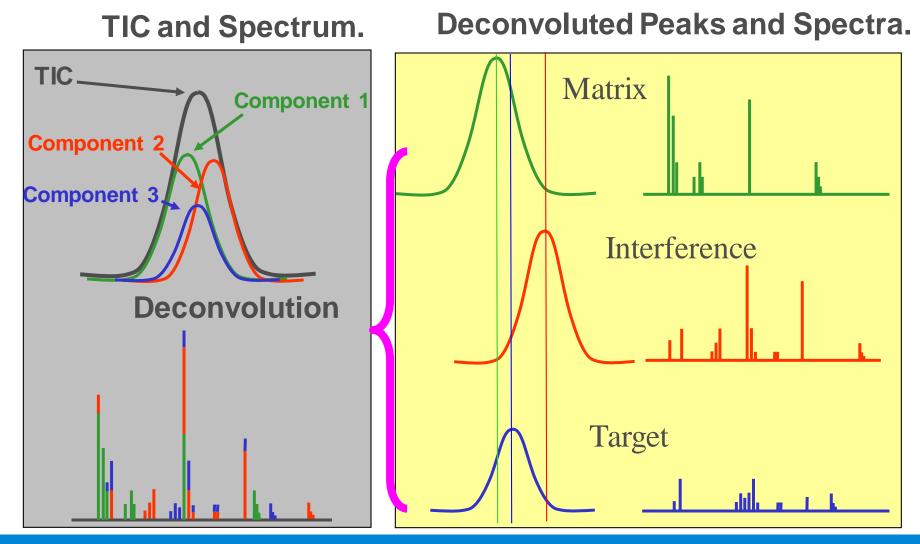
What Can We Get From GC/MS?

What Can We Get From GC/MS?

Preparation Data for Statistical Analysis Using AMDIS

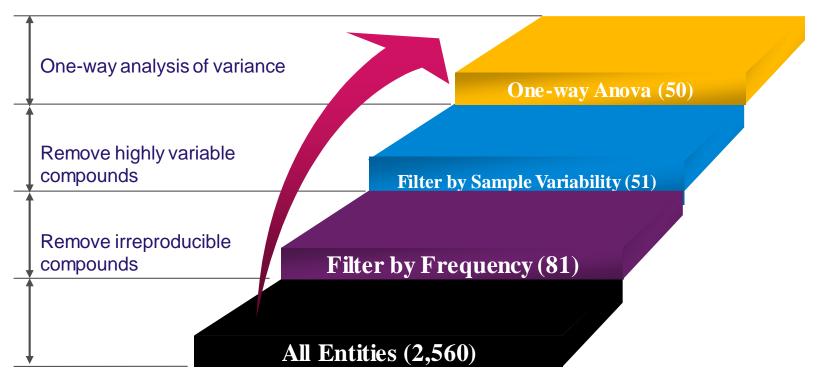
Noise Analysis

Component Perception

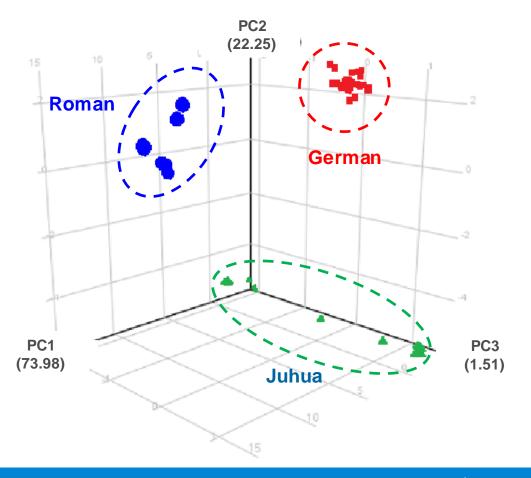

Spectrum Deconvolution

Compound Identification

Automated Mass Spectral Deconvolution Identification System



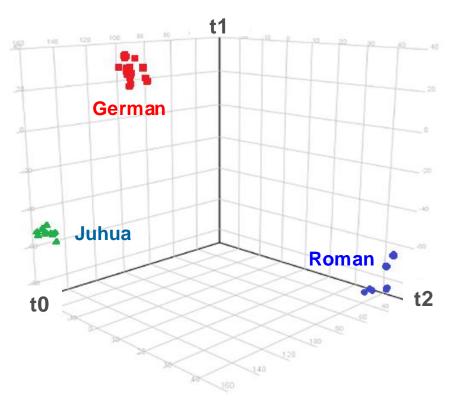
Pulls Out Individual Components and Their Spectra


Find Meaningful Differences in Sample Sets Using Agilent Mass Profiler Professional

To explore the most characteristic markers representing different chamomiles
 To reduce the dimensionality of the data

Principal Component Analysis (PCA)

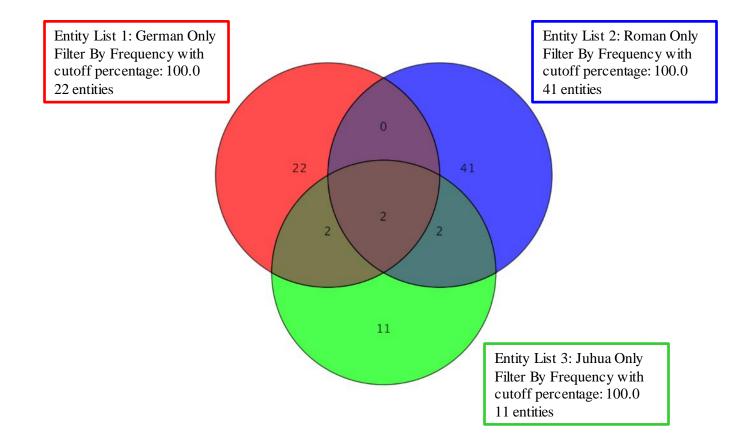
Uses for:


- Data Visualization
- Data Reduction
- Data Classification
- Trend Analysis

Solved Problems in the Study:

- How many unique "sub-sets" are in the samples?
- How are they similar / different?
- What are the underlying factors that influence the samples?
- Which measurements are needed to differentiate?

Sample Class Prediction Model – Partial Least Squares Analysis (PLS-DA)



	German	Roman	Juhua	Accuracy (%)
Model Training	9			
German	15	0	0	100.0%
Roman	0	4	0	100.0%
Juhua	0	0	8	100.0%
Recognition				400.00/
Ability (%)				100.0%
Model Validati	on			
German	4	0	0	100.0%
Roman	0	4	0	100.0%
Juhua	0	0	4	100.0%
Prediction				400.00/
Ability (%)				100.0%

NCNPR Accession Code	Product Information from the Label	Predicted	Confidence Measure
2061	Roman chamomile	German	0.47
3670	Chamomile flower	German	0.92
3998	Chamomile extracts	German	0.53
4903	Chamomile powder	German	0.90
5770	Chamomile powder	German	0.93
9357	Chamomile flowers	German	0.82
9359	Chamomile flowers	German	0.84
9362	Chamomile flowers	German	0.84
9364	Chamomile flowers	German	0.92
9382	Chamomile Organic Tea (Leaves and flowers)	German	0.94
9383	Herbal Chamomile & Fruit Tea (Rosehips, chamomile, orange peel, lemon peel & lemon myrtle)	German	0.72
9384	Chamomile Herb Tea	German	0.58
9385	Organic Tea	German	0.81
9386	Carrington Tea-Chamomile	German	0.75
9387	Chamomile Herbal Tea	German	0.91
9388	Chamomile Herb Dietary Supplement	German	0.89
9389	Chamomile Herbal Tea	German	0.61
9390	Chamomile Herbal Tea	German	0.92
9391	Chamomile Herbal Tea	German	0.77
9393	Whole German Chamomile Flowers	German	0.87
9423	Chamomile Herbal Dietary Supplement	Juhua	0.83
9424	Chamomile Herbal Dietary Supplement	Juhua	0.84
9425	Chamomile Herbal Dietary Supplement	Juhua	0.60
9426	Chamomile Herbal Dietary Supplement	Juhua	0.86
9428	Chamomile Herbal Dietary Supplement	Juhua	0.82
9429	Chamomile Herbal Dietary Supplement	Juhua	0.81
9432	Chamomile Herbal Dietary Supplement	Juhua	0.99

Data Evaluation – Venn Diagram

Markers Identified From Venn Diagram

Entities		Tentative NIST Identification	Molecular	CAS
m/z	t _R (min)	Tentative NIST Identification	Weight	Number
Roman Cham	nomile			
71.0	15.10	Isobutyric acid, isobutyl ester	144	97-85-8
71.0	23.42	Isobutyric acid, 2-methylbutyl ester	158	2445-69-4
55.0, 83.0	26.64	Butyl Butenoate ^{a,b}	156	54056-51-8
83.0	39.75	3-Methyl-2-butenoic acid, 3-methylbut-2-enyl ester	168	299309
100.0	44.75	Hexyl Butenoate	324	60129-26-2
German Cha	momile			
205.0	66.94	Spathulenol	220	77171-55-2
143.0	71.43	α-Bisabolol oxide B ^{a,b,c}	238	26184-88-3
93.0, 141.0	73.04	α-Bisabolol ^{a,b,c}	222	515-69-5
143.0	76.07	Bisabolol oxide A ^{a,b,c}	238	22567-36-8
128.0	83.70	<i>E</i> -1,6-Dioxaspiro[4.4]non-3-ene, 2-(2,4-hexadiynylidene)-	200	50257-98-2
Juhua				
95.0	36.82	Borneol	154	10385-78-1
132.0	61.06	α-Curcumene	202	644-30-4
91.0	67.27	Caryophyllene oxide	220	1139-30-6
105.0, 121.0	69.75	Alloaromadendrene oxide	220	156128
204.0	71.69	Eudesm-7(11)-en-4-ol	222	473-04-1

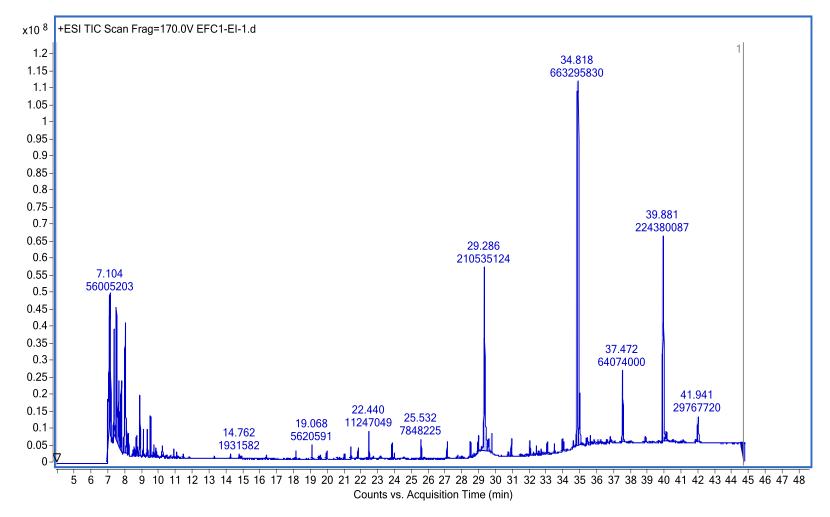
A CASE STUDY ON CHARACTERIZATION OF OLIVE OIL

Authentication of "Extra Virgin" Purity

Goals for Olive Oil Characterization Study

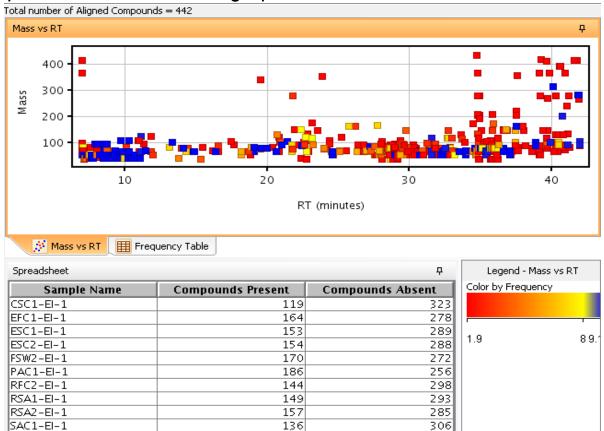
Initial screening with high-res TOF

Confirm Molecular Ion with PCI

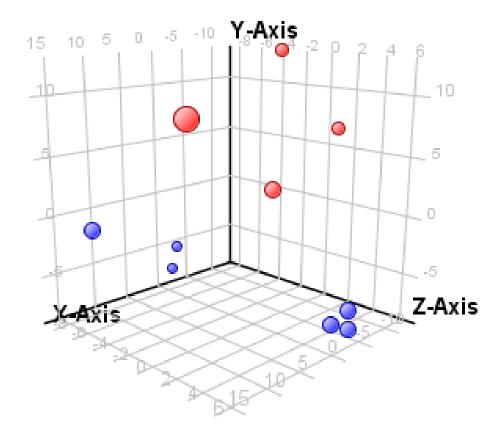

Mass Profiler Professional (MPP) analysis of data

- Generate statistical data on representative samples
- Build Class Prediction model based on sensory Pass/Fail information
- Test model on additional samples of known quality

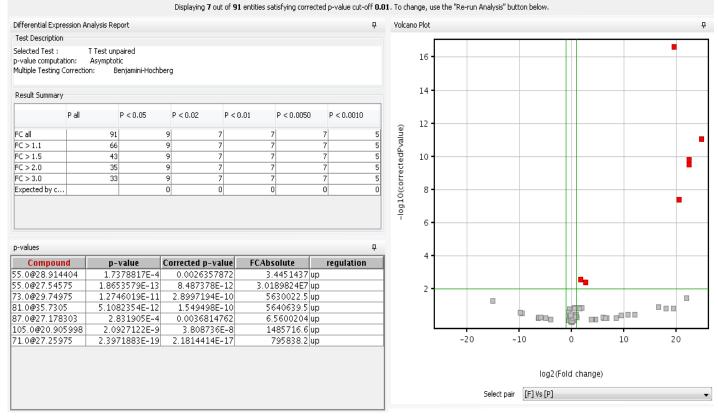
Total Ion Current of Extra Virgin Olive Oil


About 150 peaks with relative area filter of 0.1% of largest peak

Statistical Data on Olive Oil Samples


442 Unique Compounds from Chromatographic Deconvolution

Most occurred only once or twice and were filtered out by MPP Each sample is defined by passed/failed sensory evaluation


Principle Component Analysis (PCA) Data Clusters

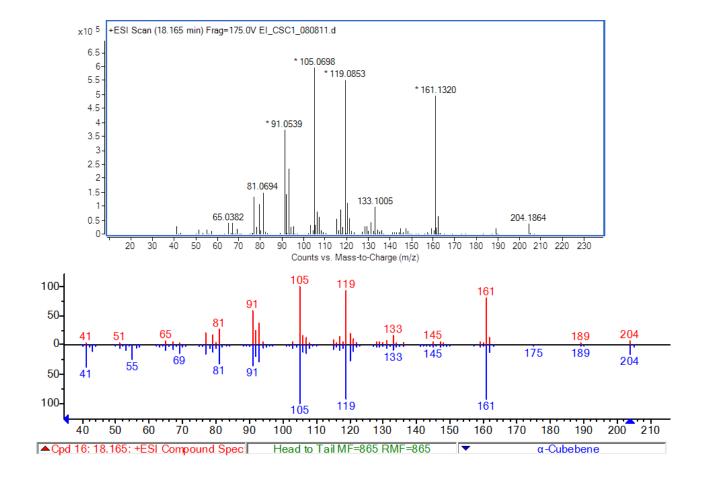
Samples initially evaluated by sensory tests: "Failed" marked red "Passed" marked blue

Fold-Change Analysis Reveals Compounds Accumulated in "Failed" Samples

The Volcano Plot on the right shows fold-change for each entity on the x-axis and significance on the y-axis.

Compounds Associated with "Failed" Sensory Test

	NIST				
Tentative NIST ID	Match	Formula	CAS	Odor	Source
n-Hexadecanoic acid	789	C16H32O2	57-10-3	Faint Oily	Bedoukian Research
Octadecanoic acid, ethyl ester	703	C20H40O2	111-61-5	Waxy	The Good Scents Company
2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-	831	C30H50	111-02-4	Floral	The Good Scents Company
α-Cubene	880	C15H24	17699-14-8	Herbal	The Good Scents Company
None: confirmed by PCI data as 2H-Pyran-2-one, tetrahydro-6-nonyl-	574 ??	C14H26O2	2721-22-4	Waxy	The Good Scents Company


Lower NIST match factor indicates that tentative NIST ID may not be correct (actual compound not included in combined NIST Wiley database), but data gives a reasonable estimate of empirical formula

				EI [M*]+			PCI [M+H]+		
Tentative NIST ID	NIST Match	Formula	CAS	Calculated	Measured	Mass Error (PPM)	Calculated	Measured	Mass Error (PPM)
n-Hexadecanoic acid	789	C16H32O2	57-10-3	256.2397	256.2385	4.683115	257.2475	257.2470	1.9437
Octadecanoic acid, ethyl ester	703	C20H40O2	111-61-5	312.3023	312.3008	4.803039	313.3101	313.3091	3.1917
2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-	831	C30H50	111-02-4	410.3907	410.39037	0.816295	411.3985	411.3987	0.4861
α-Cubene	880	C15H24	17699-14-8	204.1873	204.1883	4.897464	205.1951	205.1945	2.9240
None: confirmed by PCI data as 2H-Pyran-2-one, tetrahydro-6-nonyl-	574??	C14H26O2	2721-22-4	226.1927	ND	ND	227.2006	227.1987	8.3627

Compound with lowest NIST match also has highest deviation (ppm) for PCI

EI Library Search of Un-regulated Compounds

Commercial unit mass El spectral libraries like Wiley and NIST can be searched using accurate mass El TOF data to identify compounds.

PCI Confirmation of Molecular Ion

Allow	ved Species Limits	Scoring			Formula (M)	Score (MFG V	Mass	Mass (MFG)	m/z (Calc)	Diff (ppm)			
Ma	ass and charge			•	C15 H	124 100	204.1872	204.1878	205.1951	2.83			
Ma	ss or m/z:	205.1945	•		C10 H24 N2	02 99.94	204.1872	204.1838	205.1911	-16.87			
					C9 H24 N4	40 99.7	204.1872	204.195	205.2023	38.14			
Ch	arge:	1	•		C11 H24	03 98.96	204.1872	204.1725	205.1798	-71.89			
Ch	arge carrier				C7 H20 N	S O 98.55	204.1872	204.1699	205.1771	-85.04			
	sitive ions: H	✓ Ne	gative ions: H		C8 H24	N6 98.26	204.1872	204.2062	205.2135	93.16			
10		• 140	gauve ions. [n · · · · ·		C10 H24 N	2 S 97.85	204.1872	204.166	205.1733	-103.85			
MS	ion electron state:	even elect	tron 🔻		C12 H28	02 97.75	204,1872	204.2089	205.2162	106.31			
-					C13 H20	N2 97.13	204.1872	204.1626	205.1699	-120.35			
ER	ements and limits			111	C8 H20 N4	02 96.16	204.1872	204.1586	205.1659	-140.06			
	Element	Minimum	Maximum		C11 H24 0	STATE 100	204.1872		205.1621	-158.86			
•	C	3	60		C******		001 1070	0014541	005 4507	10.00			
	Н	0	120		C9 H; E	Base formula (M)			7	Species	1	Diff (ppm)	Defect
_	0	0	30		C1/	C15 H24 O0			•	M*+	204.1873	1	0.1873
-	N S	0	5		C81	015 1124 00				(M+H)+	205,1951	2.81	0.1951
-	CI	0	0		C1	Species to calculate			-	(M+CH5)+	221,2264		0.2264
-	[13C]	0	0		C1(64 (C20)		(M+C2H5)+	233.2264		0.2264
		1085			C6 H	Positive ions	Neg	ative ions					S. 13.5
-					C9 H2	form Charles and				(M+C3H5)+	245.2264		0.2264
		+)	K		C12 F	 Neutral Radical 	<u>^</u>						
_					C7 H	V +H							
						+Na	E						
						V +C2H5							
						V +C3H5	*						
							-						
							+ X						
					1	Number of charges:	2	-	1				

Mass and formula calculators used to determine empirical formula

Compounds Associated with "Failed" Sensory Test

	NIST				
Tentative NIST ID	Match	Formula	CAS	Odor	Source
n-Hexadecanoic acid	789	C16H32O2	57-10-3	Faint Oily	Bedoukian Research
Octadecanoic acid, ethyl ester	703	C20H40O2	111-61-5	Waxy	The Good Scents Company
2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-	831	C30H50	111-02-4	Floral	The Good Scents Company
α-Cubene	880	C15H24	17699-14-8	Herbal	The Good Scents Company
None: confirmed by PCI data as 2H-Pyran-2-one, tetrahydro-6-nonyl-	574 ??	C14H26O2	2721-22-4	Waxy	The Good Scents Company

Lower NIST match factor indicates that tentative NIST ID may not be correct (actual compound not included in combined NIST Wiley database), but data gives a reasonable estimate of empirical formula

				EI [M*]+			PCI [M+H]+		
Tentative NIST ID	NIST Match	Formula	CAS	Calculated	Measured	Mass Error (PPM)	Calculated	Measured	Mass Error (PPM)
n-Hexadecanoic acid	789	C16H32O2	57-10-3	256.2397	256.2385	4.683115	257.2475	257.2470	1.9437
Octadecanoic acid, ethyl ester	703	C20H40O2	111-61-5	312.3023	312.3008	4.803039	313.3101	313.3091	3.1917
2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-	831	C30H50	111-02-4	410.3907	410.39037	0.816295	411.3985	411.3987	0.4861
α-Cubene	880	C15H24	17699-14-8	204.1873	204.1883	4.897464	205.1951	205.1945	2.9240
None: confirmed by PCI data as 2H-Pyran-2-one, tetrahydro-6-nonyl-	574??	C14H26O2	2721-22-4	226.1927	ND	ND	227.2006	227.1987	8.3627

Compound with lowest NIST match also has highest deviation (ppm) for PCI

What Did We Learn?

Chemometrics can be used to analyze large, complex (3-D) data sets MUCH faster than manual analysis

Mass Profiler Professional allows easy statiscally analysis of MS data.

With AUTHENTICATED samples, an accurate sample class prediction model can be developed and verified

The SCP model can subsequently be used to analyze samples in an automated manner w/o reanalysis of the authenticated samples

Chemometric analysis can be used to identify potential markers for different type of samples

Thank you for your attention!

Any Questions?

joerg_riener@agilent.com

