

FOOD PROVENANCE BY ELEMENTAL AND ISOTOPIC FINGERPRINT METHODS

Thomas PROHASKA

Johanna IRRGEHER, Andreas ZITEK, Tine OPPER Sylvie BONNET, Anastassiya TCHAIKOVSKY

University of Natural Resources and Life Sciences Vienna, Department of Chemistry, Division of Analytical Chemistry, VIRIS-Laboratory for Analytical Ecogeochemistry Konrad-Lorenz-Straße 24, 3430 Tulln, Austria

BOKU University and Research Center - Tulln

Research focus: bioresources, renewable resources, biologically based technologies Construction: 2009 - 2011 Lab relocation: April-2011 Opening ceremonies: Sep-2011

Analytical Ecogeochemistry

Rationals

Thuna, made in Austria

Global food trade

Food Authenticity/Food Provenance

Rationals

- Consumer protection:
 - Food safety
 - Genuineness (,You get what you pay for')
- Producer protection
 - Competition
 - Proof of provenance (consumer confidence)
- Protection of regionality
 - Diverstiy of production
 - Specific production processes

EU regulation

New framework for Quality schemes in agriculture enters into force

03/01/2013

Guaranteeing **quality to consumers** and a **fair price for farmers** are the twin aims of the new Quality Regulation that enters into force today.

Based on the proposal tabled by the Commission in 2010 the text is a very balanced compromise between the Council, the Parliament and the Commission.

It encourages the diversification of agricultural production, protect product names from misuse and imitation and help consumers providing information on product characteristics and farming attributes.

http://ec.europa.eu/agriculture/quality/

EU regulation

The new Regulation on quality schemes for agricultural products and foodstuffs achieves a **simplified regime for several quality schemes** by putting them under one single legal instrument.

Furthermore, it creates a more robust framework for the protection and promotion of quality agricultural products.

The key elements of the new Regulation include:

more coherence and clarity to the EU quality schemes,

- a reinforcement of the existing scheme for protected designations of origin and geographical indications (PDOs and PGIs),
- overhauling the traditional specialities guaranteed scheme (TSGs),
- laying down a new framework for the development of optional quality terms to provide consumers with further information, it creates and protects the optional quality term "mountain product".

http://ec.europa.eu/agriculture/quality/

Traceability solutions

Traceability solutions

Traceability by

- Software solution
- Databases
- www-information platforms

Marking by

- RFID-tags
- Code systems
- Animal passports
- Animal tattoos

....added systems are not fraud-resistent

Independent solutions

- Information is an intrinsic food property and does not have to be added
- Information is unique for the food commodity
- Information can be identified (simple and cheap)
- Information is fraud resistant

Analytical methods (1)

- Molecular-biological methods
 - 🍮 DNA (e.g. DNA marker in olive ois)
 - ELISA technique (cultivation of specific antibodies for the determination of defined proteins)
 - Amplified Fragment Length Polymorphism (AFLP) markers (fish, seafood)
 - Genetic fingerprint analysis (e.g. cereals)
- Identification of specific chemical and physical parameter

(e.g. honey: water content, ash content, sugar content, pH, differential scanning calorimetry; rheology)

Sensory analysis (electronic nose)

(e.g. wine: colour, taste, aroma....)

Analytical methods (2)

- Identification of specific components and evaluation using multivariate statistics
 - IR spectroscopy (e.g. fruits, wine, sugar addition to honey)
 - Raman spectroscopy (e.g. adulteration of oils)
 - Front Face Fluorescence Spectroscopy (measurements of fluorophores e.g. aromatic amino acids; vitamine A and B2, chlorophyll)
 - Chromatographic methods (HPLC; GC) (e.g. beta-lactoglobuline) in milk, organic acids in fruit juices; adulteration of olive oil)

Organic mass spectrometry (non targeted fingerprint)

Analytical methods (3)

Identification of elemental and isotopic fingerprints

specific isotope ratios (isotopic fingerprints)

NMR; SNIF-NMR (H,C)

- IR-MS (GSMS) (H,C,N,O,S)
- TIMS (Sr,Pb)

ICP-MS (Sr,Pb,U,Ca,S,B)

Identification of specific elements and evaluation using multivariate statistics (multielement fingerprints)

AAS

ICP-AES

ICP-MS

Elemental and isotopic fingerprinting

Elemental and isotopic fingerprinting

Nuclide map

succession in the later.

Machines and an analysis of an index of a second se

Elemental and isotopic fingerprint

Source: Husted et al. J. Anal. Atom. Spectrom. 2011, 26, 52-79

Elemental fingerprint of REE for proof of authenticity / origin

Determination of elemental fingerprints (e.g. rare earth elements)

Natural variation of isotopic systems

8

Natural variation of isotopic systems

Natural chemical processes
Radioactive decay (e.g. U, Pb)
Redox reactions (e.g. Fe)
Photoreactions (e.g. Hg)
pH dependent reactions (e.g. B)

Natural physical processes
Diffusion (e.g. C, H, O)
Precipitation (e.g. H, O)

Natural biochemical processes
Microbial activities (e.g. S, N)
Plant activities (e.g. C, Si)

Isotopic Systems Used in Food Provenance Studies

The ,big 7'

Pb Isotopic Variation

Sr Isotopic Variation

Sr isotopic system

Sr/Rb isotopic system

 ${}^{87}\text{Rb} \longrightarrow {}^{87}\text{Sr} + \beta^{-} + \nu + Q$ T_{1/2} ... half life(T_{1/2} = 48.8*10⁹ a)

λ ... decay constant($λ = 1.42*10^{-11} a^{-1}$)

variation of ⁸⁷Sr/⁸⁶Sr with geological provenance

- geochemical composition
- geological age

Provenancing of strawberry raw products using elemental and isotopic fingerprints – a pilot study

Sample preparation

2

3

Cutting, freeze drying and homogenization (replicate analysis n=5)

Microwave assisted acid digestion

Measurement of the elemental pattern with ICP- Quadrupol MS 'Nexion 300D'

Sr/matrix separation with a specific resin (elimination of Rb interference)

Sample preparation

6

Concentration screening with ICP-Quadrupol MS 'Nexion 300D'

Measurement of the isotope ratio ⁸⁷Sr/⁸⁶Sr with Multicollector-ICP-MS 'Nu Plasma HR'

Data evaluation

Blank, Rb, Instrumental Isotopic fractionation

Results – elemental pattern

Results – Elemental Pattern

Sr isotopic data

Sr isotopic fingerprinting

Applicability of Sr isotope ratios

- Regional signal can be determined via bioavailable fraction from soil
- Direct link from soil to plant
- Annual and seasonal stability

Parameters to be considered

- Change of irrigation
- Influence of fertilizer
- Regional heterogeneity of the soil

Sr isotopic fingerprinting

BOKU

Applicability of Sr isotope ratios

- Regional signal can be determined via bioavailable fraction from soil
- Direct link from soil to plant
- Annual and seasonal stability

Parameters to be considered

- Change of irrigation
- Influence of fertilizer
- Regional heterogeneity of the soil
Marchfeld asparagus

Marchfeld: Sr range and source

Sr isotopic composition

Maternal rock

Wet and dry deposition

20 % weathering

80 % recycled Sr

Miller EK, Blum JD and Friedland AJ, Nature **362**, 1993, 438-441

Marchfeld: Sr range and source

Traceability

- Marchfeld: hand picked by lab staff (traceable)
- other regions: purchased at the market (not traceable)
- include other signatures
 - multivariate statistics

Marchfeld asparagus

Hungarian sample near Austrian border

3D main component analysis

Predicting Provenance

Complementary approaches for the verification of food provenance

Databases

Origin is determined by comparison to data wihtin a database

Isoscapes

Origin is detemrined by comparing the data within a food to interpolated geoclimatic factors depicted in an isotopic map

- Requires data from all provenances (authentic samples)
- Expensive (large number of datas)
- Stability has to be proven (regular update)

- Prediction of areas with no isotopic data
- Large scale data might overlook regionality
- Annual/seasonal stability has to be proven

 δ^{18} O in plants

Distribution of C3 and C4 plants

H and O isoscapes

Weighted Jan. 82H www.waterisotopes.org 180 90W 90E 180 60N 601 30N 30N EQ EQ 305 305 60S 605 90W 90E 180 180 Ö (%) -50 -200 -170 -140 -110-80 -20 10 IAEA (2001). GNIP Maps and Animations, International Atomic Energy Agency, Vienna. Accessible at http://isohis.iaea.org

Assessment of ,isoscapes'

• Continuous maps of isotope ratios for authenticity, migration and more

Sr isoscapes

- Isoscapes for
 - Bioavailable ⁸⁷Sr/⁸⁶Sr in soils
 - ⁸⁷Sr/⁸⁶Sr in rivers and lakes

Sr – isoscape – definition of a region by the bioavailable Sr

Sr – isoscape – definition of a region by the bioavailable Sr

Sr isoscape work - VIRIS database

Sample type could be wood, water, fish hard parts, soil,			
	Project Project category Project name Sample site code / ID Sample date from to Sample code, number Sample type Sample method	Specific parameters Coordinates Point top, left Lat (X): Long (Y): Point bottom, right Lat (X): Long (Y): Include GZÜV site list	Physical / chemical parameters Add Remove Parameter Value from Value to Measurements Add Remove Parameter Value from Value to
	Sampling number, name Clear result table Search Add search Project category Project name Site code 1 Fish Test Isomark Fuscher Ache	Geology - · Fixer name GZÜV number GZÜV number Species type - Wood type - V Sample date Sample number Sample code Sample 08.04.2010 O_FuA_1	875r/86Sr Export Show in map le type Sample methode 32 BF 16.2

- Input via Excel spread sheets in different categories of projects and samples, including quality judgement, instrumental settings, pictures, links to original data, citation etc.
- Searching data possible
 - by a wide variety of requests, including the measured parameter (e.g. ⁸⁷Sr/⁸⁶Sr)
 - by a geographical window that can be opened from the database and that allows to select a geographical area

Sr isoscape work - Isoscape Austria Portal

R

TRACE project (trace.eu.org)

Combining areas of origin

Combination of isotopic and elemental information: Determination of the origin of green coffee beans

Standard protocol ICP-MS

Standard protocol IRMS

Continental origin

Multielement analysis

Regional origin

(Rodrigues et al., European Food Research and Technology)

■ ⁸⁷Sr/⁸⁶Sr δ¹⁸Ο 4 3 Malawi 2 Tanzania Ruanda 1 PC 2: 33.19% 0 Äthopien -1 Kenia -2 -3 -4 -3 -2 -5 -4 -1 0 1 2 3 4 5

Case study: Hawaii

Hawaii – origin of islands

- δ³⁴S
- Lanthanide, B, Al, Fe, Ni, Cu, Rb, Sr, Mo, Ba

Hawaii – regions within islands

Hawaii – regions within islands

Canonical Discriminant Functions

Provenance of Fish

Fish Hard Parts

Eye lenses

Scales Fin rays

Sr Isotopes in Fish Otoliths

- Otolith = ear stone of the fish
 - \rightarrow function: balance, orientation, hearing
 - metabolically inert
 - •Grows in discrete layers
 - Ca \leftrightarrow Sr
 - Analysis by LA-ICP-MS

Different Areas of the Otolith Represent different age times

Otolith – core: Sr-signature of the juvenile habitat

Otolith – rim: Sr –signature of the adult habitat

- Migration pattern
- Fish provenance
- Fish stock management
- Population identification
- Population dispersion
- Age determination
- Biomonitor
 - Temperature
 - Salinity
 - contaminationgen

Elemental uptake in the different fish hard parts

E.g. 80-90 % uptake of Ca in the otolith via the gills

Time resolved analysis using LA-ICP-MS

Example: change of habitat (trout)

genetics (factorial correspondence analysis)

Achse 1 (4,21%)
Element- and isotopic analysis

Element- and isotopic analysis

Element- and isotopic analysis

Comparison of fish otoliths of rainbow trout from different fish farms

Juvenile phase: groundwater Adult phase: surface water

Juvenile and adult phase in the same water

Otolithen: 100% identification of the habitat clusters

via

²³Na/⁴³Ca, ⁸⁸Sr/⁴³Ca and ⁸⁷Sr/⁸⁶Sr

(Discriminant analysis)

Water sample clusters:

Zitek, A., M. Sturm, H. Waidbacher and T. Prohaska (2010). *Fisheries Management and Ecology, 17, 435-445*

Salmonide: chemical life history (age: 12 months)

otolith growths

Comparison of life histories

- Individual ,chemical curriculum' of fish (⁸⁷Sr/⁸⁶Sr, Sr/Ca)
- Time resolved analysis from the egg to the last months
- Significant difference in the life histories

Elemental and isotopic fingerprinting

Enriched stable isotope tracer studies

Sr Spiking

To trace element fluxes in an ecosystem

To identify sources and sinks

To mark a specific abiotic or biotic matter in

an ecosystem

To monitor metabolic fluxes of an element

Endithed stable isotopic spikes

A Lys brancing a standard from change of the half the

Enriched stable isotope tracer studies Basic principle

Enriched stable isotope tracer studies

Enriched stable isotope tracer studies Isotope pattern deconvolution (IPD)

Enriched stable isotope tracer studies Isotope pattern deconvolution (IPD)

R

Enriched stable isotope tracer studies Isotope pattern deconvolution (IPD)

R

Evaluation of the double isotope tracer Isotope pattern deconvolution

molar fraction ratio of $x_{\text{Sp1}}/x_{\text{Sp2}}$ of double spike in central otolith region

J. Irrgeher, A. Zitek, M. Cervicek, T. Prohaska; J. Anal. At. Spectrom., 2014,29, 193-200

APPLICATION: Transgenerational marking of fish

Ecological application

Mass marking of larvae without interfering with natural spawning, dispersal

• Aquaculture (affordable marking method) Quality management (authenticity and origin)

Transgenerational marking of fish

- Maternal transfer of elements to eggs
- Otolith:
 - first hard part developing (within the egg)
 - stores maternal information
- After hatching, uptake of environmental information

Maternally derived area of fish otolith

The **center of the otolith** is **created within the egg**; contains the maternal information

Hatch check: visual clue for the area, where maternal information can be expected

Transgenerational isotopic marking of freshwater fish using a ⁸⁶Sr/⁸⁴Sr double spike

- Model species:
 - Carp: cyprinids (100.000-300.000 eggs/kg body weight)
 - Brown trout: salmonids (1.500-2.000 eggs/kg body weight)

LA-ICP-Q-MS of a single carp otolith (ca. 4440 μg ⁸⁶Sr kg⁻¹ fish)

⁸⁶Sr/⁸⁸Sr

⁸⁶**Sr**/⁸⁸**Sr** natural ~0.12

He carrier gas Spot size: $35 \ \mu m$ Scan speed: $2 \ \mu m \ s^{-1}$ Rep. rate: 20 Hz

Nexion 300D (ICP-Q-MS) Perkin Elmer

NWR193 Laser Ablation System

⁸⁶Sr/⁸⁸Sr natural ~0.12

Nexion 300D (ICP-Q-MS) Perkin Elmer

NWR193 Laser Ablation System

Absolute ⁸⁸Sr/⁸⁴Sr and ⁸⁸Sr/⁸⁶Sr ratios – Control fish

> No change of natural Sr isotopic signature

A. Zitek, J. Irrgeher, M. Cervicek, M. Horsky, M. Kletztl, T. Weismann, T. Prohaska (*Marine and Freshwater research, in press*)

Absolute ⁸⁸Sr/⁸⁴Sr and ⁸⁸Sr/⁸⁶Sr ratios – Spiked fish

⁸⁴Sr

Significant change of natural Sr isotopic signature in the core region of otoliths:

A. Zitek, J. Irrgeher, M. Cervicek, M. Horsky, M. Kletztl, T. Weismann, T. Prohaska (*Marine and Freshwater research, in press*)

otolith number

Requirements

Requirements elements *l* / isotopic fingerprint

- Instrumentation (multi-elemental fingerprinting)
- ICP-AES (30.000 8.000 U\$) / 5000 10000U\$/year
- ICP-QMS (70.000-40.0000 U\$)/ 10000 15000 U\$/Year
- Instrumentation (isotope ratio analysis)
- (ICP-QMS (70.000-40.0000 U\$)/10000 15000 U\$/Year)
- (ICP-SFMS (300.000 500.000 U\$/10.000 15.000 U\$/year)
- TIMS (250.000 500.000 U\$/ 10.000 15.000 U\$/year)
- MC-ICP-SFMS (500.000-800.0000 U\$)/ 15.000 20.000 U\$/Year

- Instrumentation (multi-elemental fingerprinting)
- ICP-AES (30.000 8.000 U\$) / 5000 10000U\$/year
- ICP-QMS (70.000-40.0000 U\$)/ 10000 15000 U\$/Year
- Instrumentation (isotope ratio analysis)
- (ICP-QMS (70.000-40.0000 U\$)/10000 15000 U\$/Year)
- ICP-SFMS (300.000 500.000 U\$/10.000 15.000 U\$/year)
- TIMS (250.000 500.000 U\$/ 10.000 15.000 U\$/year)
- MC-ICP-SFMS (500.000 800.0000 U\$)/15.000 20.000 U\$/Year

Infrastructure / consumables

- Cleaning and chemicals (100.000 200.000) / 10.000 U\$/year
- Sample preparation (100.000 300.000 U\$) / 20.000U\$/year
- Analytical laboratory (500.000 1.000.000 U\$) / 10.000U\$/year

Requirements elements/isotopic fingerprint

Collaboration

- Isotopic measurements (light stable isotopes) 50 – 200 U\$ / sample
- Isotopic measurements (heavy stable isotopes) 50 – 200 U\$ / sample
- Elemental fingerprint (multielement) 50 – 250 U\$ / sample
Acknowledgements

