URAM-2014 IAEA Headquarters, Vienna, Austria, 23-27 June 2014

Advancements in Exploration and In-Situ Recovery of Sedimentary-Hosted Uranium

Horst Maerten^{1,2}, Andrea Marsland-Smith¹, Jonathan Ross¹, Michael Haschke², Harald Kalka², and Jens Schubert²

¹Heathgate Resources Pty. Ltd., Adelaide, Australia ²Umwelt- und Ingenieurtechnik GmbH Dresden, Germany (UIT)

Presented by Peter Woods, IAEA

Context and Outline

- ISR feasibility determining factors
 - What counts?

• High-resolution shallow seismic

 Methodology from 'oil&gas hunting' adapted to mineral exploration in sedimentary basins

New down-hole logging tool

 Advanced PFN technology combined with lithologic logging

Moving theory to practice

 Reactive-transport modelling for optimizing ISR – It works!

Advancements in Exploration and In-Situ Recovery of Sedimentary-Hosted Uranium

ISR feasibility – determining factors

ISR Feasibility – Determining Factors

Confinement condition

- Overall sedimentary stratification and hydrogeology

Hydrology

- Depth below surface/below groundwater table
- Permeability/porosity

Mineralogy/geochemistry

- Uranium mineralogy
- Reactive minerals and interfering components
- Groundwater salinity
- Uranium ore deposit
 - Morphology
 - Uranium resource/reserve
 - U grade

Key factors new methods to measure those reliably and economically

- ← Technological/economic/regulatory feasibility
- $\leftrightarrow \quad \text{Database for wellfield planning and operation}$

High-resolution shallow seismic

- 5 m geophone intervals
- Envirovibe vibroseis buggies 60kN
- 40 lines / 318 line km

Seismic survey 2010/2011

- 5 m shot interval

Paralana Lease:

Advancements in Exploration and In-Situ Recovery

of Sedimentary-Hosted Uranium

URAM-2014

Seismic in Paralana Lease: Historical

+ HEATHGATE

💯 UMWELTLEISTUNGEN

3D Basin Model Based on 2D Seismic Grid

High-Resolution Shallow Seismic

- Distinct measure of stratigraphy and irregularities
 - Indication of tectonic faults
 - Potential indicators for uranium mineralization
- Improved basis for hydrogeological models (regional/local)
 - Well-resolved sedimentary stratigraphy
 - Consideration of tectonic faults as barriers and potential fluid pathways
- Improved concept for further seismic surveying (dedicated to optimize drilling programs)
 - Optimized geometrical setup (2D \rightarrow optional 3D) (5 m \rightarrow 2.5 m spacing for depth < 500 m)
 - System hardware/source
 - Software for maximum output/best resolution

New down-hole logging tool – APFN⁺

Support by APMI, TX (USA), particularly by Dr Donald Steinman, Dr Russel Hertzog, in early development phase gratefully acknowledged

APFN⁺ Background

Development/Production by UIT Dresden Launched at Heathgate, S.A.

Motivation for development

- Systematic errors/influences in conventional PFN logs (borehole size, varying neutron absorption in formation, porosity, bulk density, etc.), 10-30% effect (up to 80% possible)
- Improve accuracy by in-tool corrections
- Extend functionality \rightarrow lithologic logging
- Advancements
 - Pulsed neutron generator technology/control
 - Extended neutron detection channels operated in time-resolving mode
 - γ -ray spectrometer based on high-performance scintillator (CeBr₃) operated in several modes:
 - Natural γ-rays
 - γ -rays from fast-neutron inelastic scattering
 - γ -rays from thermal-neutron capture
 - γ -ray spectra from neutron activation

APFN⁺ – Advanced PFN Logging Tool

Functionality

- PFN (prompt fission neutron)
- Extended neutron channels (time-resolving)

(various neutron Detectors

and y-ray channels)

- Multi-mode γ -ray spectroscopy

General characteristics

DT-neutron generator (14 MeV, 1 kHz, 7108 n/s)

- 3 m long, 75 mm OD, 33 kg weight —
- Housing transparent to neutrons
- N generator tube: 600 h lifetime _ warranted (>1,000 h feasible)

Electronics spectrometer.

master control

Power supply

telemetry

APFN⁺ Functionality, Algorithms and Data Output

APFN⁺ Algorithms and Validation

- Extensive computer simulations
 - MCNP5/6 software from Los Alamos National Laboratory (LANL)
 - Lithologic model for variation of sedimentary formations

- Extensive testwork 2011-12 / routine logging since early 2013
 - Test pits and holes (UIT Dresden)
 - Calibration facilities: George West (TX), TRAC lab (Halliburton, TX), AMDEL (Adelaide, S.A.)
 - Beverley calibration pits/reference holes \rightarrow exploration holes

Lithological Profiles from APFN⁺ (Example)

Conventional (subjective)

APFN⁺ based algorithm:

- High resolution
- Objective
- Shepard's nomenclature for sand-silt-clay systems (meanwhile extended)

ΊΠ

Integrative Power of APFN⁺ - All by ONE Logging Tool

• Borehole parameters

- Borehole diameter (from H⁺ capture γ -peak) validated against calliper tool
- Inclination (current upgrade)
- U grade pU₃O₈: PFN technology improved (important corrections)
 - Increased sensitivity (lower level of detection <0.005 wt%)
- γ -spectroscopy in passive mode $\rightarrow eU_3O_8 \rightarrow disequilibrium / Th$
- Hydrological parameters
 - Hydrogen index measured \rightarrow deduced (free-fluid) porosity \rightarrow permeability
 - Data plausible / validation against core assays and pump tests in progress

Lithological logging

- Data **quintuple** from neutron channels to 'calculate' lithology (validated on the basis of extensive logging experience since early 2013)
- Elemental/mineral abundances from γ-ray spectroscopy (γ-rays from thermalneutron capture and inelastic scattering of fast neutrons)
 - \rightarrow focused on reactive minerals (clays, pyrite, calcareous minerals, lignite, ...)
 - \rightarrow organic carbon still under investigation

Substitutes all conventional logging tools / all functions now in ONE TOOL

 \rightarrow Much more information at much less logging costs

Advancements in Exploration and In-Situ Recovery of Sedimentary-Hosted Uranium

<section-header><text><text><text><text><text>

Moving theory to practice:

Reactive-transport modelling for optimizing ISR (acidic) (and simulating mine-closure scenarios)

From Exploration Data to Acid ISR Performance

UMWELTLEISTUNGEN

Wellfield Hydrology (Beverley North Example)

Reactive Transport Model (UIT Code TRN)

Primary Mineral Phases – Secondary Phases

🔶 HEATHGATE

Rates from literature as far as available and quantified by lab testing. Validated by real wellfield performance (Beverley North)

Influence of Reducing Minerals and Mitigation

Demonstration of constraint leaching and countermeasures

Catalyzed ISR – Solving the REDOX Puzzle

Based on

- Wellfield parameters including
 - Effective pore volume and flow rates (from hydrological modelling), both determining the pore volume exchange rate

Mineral abundances including

- Uranium ore grade
- Abundance of sulfidic minerals (e.g. pyrite)
- Abundance of organic matter (quantified as TOC)

the model identifies the chemical conditions (pH, oxidation potential) that maximises U leachability and recovery.

→ Recipe for conditioning/refortifying the injection fluid to catalyze U leaching efficiently (to overcome interference by competing reductants).

- Field-tested in 2012/13 and meanwhile successfully implemented.
- Used for planning purposes and ISR control during operation.
- Key to reduce \$/lb costs significantly.

Advancements in Exploration and In-Situ Recovery of Sedimentary-Hosted Uranium

SUMMARY – It works:

- Adaption of advanced seismic methodology igodolof oil&gas industry (1-5 km) to high-resolution shallow seismic in sedimentary basins (< 500 m)
- Advanced (self-correcting) PFN technology \bullet + lithologic logging in just one tool (launched at Heathgate since March 2013)
- Move theory to practice: \bullet Kinetic leach model (reactive transport) implemented to optimize and control acid ISR

URAM-2014

Wield Operation Time [days

