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Context and Outline 

• ISR feasibility – determining factors
– What counts?

• High-resolution shallow seismic
– Methodology from ‘oil&gas hunting’ adapted to 

mineral exploration in sedimentary basins

• New down-hole logging tool
– Advanced PFN technology 

combined with lithologic logging

• Moving theory to practice
– Reactive-transport modelling for optimizing ISR –

It works!
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Beverley ISR plant 
Schematic 

(source: EIS 1998)

ISR feasibility – determining factors
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• Confinement condition

– Overall sedimentary stratification and hydrogeology

• Hydrology

– Depth below surface/below groundwater table

– Permeability/porosity

• Mineralogy/geochemistry

– Uranium mineralogy

– Reactive minerals and interfering components

– Groundwater salinity

• Uranium ore deposit

– Morphology

– Uranium resource/reserve

– U grade

ISR Feasibility – Determining Factors

↔  Technological/economic/regulatory feasibility
↔  Database for wellfield planning and operation

Key factors -

new 
methods 

to measure
those

reliably
and 

economically



Seismic survey 2010/2011
Paralana Lease:

- 40 lines / 318 line km
- 5 m shot interval
- 5 m geophone intervals
- Envirovibe vibroseis buggies 60kN

High-resolution
shallow seismic

Pepegoona

Pannikan

Beverley
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Seismic in Paralana Lease: Historical

1984
SPG Petratherm

2006 
Curtin University

2012 
UIT/Petrologic

Central Line

2010/2011 
Heathgate/Velseis

2500 (central)

Enhanced 
resolution
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Central Line

Post-stack
time migration

Pre-stack
depth migration

2500 (central)
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3D Basin Model Based on 2D Seismic Grid 

Tectonic faults

Miocene

Eocene

Cretaceous

Pliocene …

Beverley deposit

Tectonic faults

Channel

Clay

Mudstone
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• Distinct measure of stratigraphy and irregularities

– Indication of tectonic faults

– Potential indicators for uranium mineralization 

• Improved basis for hydrogeological models 
(regional/local)

– Well-resolved sedimentary stratigraphy

– Consideration of tectonic faults as barriers and potential fluid 

pathways

• Improved concept for further seismic surveying 
(dedicated to optimize drilling programs)

– Optimized geometrical setup (2D → optional 3D)

(5 m → 2.5 m spacing for depth < 500 m)

– System hardware/source

– Software for maximum output/best resolution

High-Resolution Shallow Seismic



New down-hole logging tool – APFN+

Neutron ‘cloud’:
Range 0.4-1 m

(computer simulation)

Support by APMI, TX (USA), particularly by Dr Donald Steinman, Dr Russel Hertzog, 
in early development phase gratefully acknowledged 

Radius →
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APFN+ Advanced prompt fission neutron
tool with extended functionality



APFN+ Background

• Motivation for development

– Systematic errors/influences in conventional PFN logs

(borehole size, varying neutron absorption in formation, 

porosity, bulk density, etc.), 10-30% effect (up to 80% possible)

– Improve accuracy by in-tool corrections

– Extend functionality → lithologic logging

• Advancements

– Pulsed neutron generator technology/control

– Extended neutron detection channels operated  

in time-resolving mode

– γ-ray spectrometer based on high-performance 

scintillator (CeBr3) operated in several modes: 

• Natural γ-rays

• γ-rays from fast-neutron inelastic scattering

• γ-rays from thermal-neutron capture

• γ-ray spectra from neutron activation

Development/Production by UIT Dresden
Launched at Heathgate, S.A. 
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APFN+ – Advanced PFN Logging Tool

• General characteristics

– 3 m long, 75 mm OD, 33 kg weight

– Housing transparent to neutrons

– N generator tube: 600 h lifetime 

warranted (>1,000 h feasible)

• Functionality

– PFN (prompt fission neutron)

– Extended neutron channels (time-resolving) 

– Multi-mode γ-ray spectroscopy



APFN+ Functionality, Algorithms and Data Output
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γ-ray spectrometer

Neutron channels

PFN counting/

decline between

neutron bursts

Intensity of 

backscattered 

neutrons

Neutron intensity in 

center and at 

periphery of n cloud

Neutron decline (τ) 

in center and at 

periphery of n cloud

γ-ray spectroscopy in 

active mode
(n generator on)

Accurate U grade
pU3O8

Bulk density ρbulk

Hydrogen index HI

Matrix/dry density

Porosity Permeability

Bulk Σa Matrix Σa

Clay content (∆τ)

Borehole radius

40K, U/Th progenies

Main mineral
abundances

Disequilibrium
pU3O8/eU3O8

eU3O8

(H peak area)

Corrections

Lithological
Profiles

Main element grades

Post-burst decline τ

Inclinometer

γ-ray spectroscopy in 

passive mode

Hole inclination

Deduced 
(model-based)



APFN+ Algorithms and Validation

• Extensive computer simulations

– MCNP5/6 software from Los Alamos National Laboratory (LANL)

– Lithologic model for variation of sedimentary formations

• Extensive testwork 2011-12 / routine logging since early 2013

– Test pits and holes (UIT Dresden)

– Calibration facilities: George West (TX), TRAC lab (Halliburton, TX), 

AMDEL (Adelaide, S.A.)

– Beverley calibration pits/reference holes  → exploration holes

Inelastic (n,n’γ) Capture (n,γ)



Conventional vs. APFN+ Logging – ‘Standard’ Logs
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Clay

Clay

Clayey 
silt

Depth        NN           RLLS/RLLD              HI                   ρbulk Σbulk ∆τ Caliper

Conventional APFN+ parameters 

Neutron Resistivity 

Higher sensitivity of APFN+ 



Conventional vs. APFN+ Logging – ‘Standard’ Logs
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B.Sc. Max R. Verdugo Ihl - TU Bergakademie Freiberg - UIT

Silty sand

Silcrete

Silcrete

Silty sand

Depth        NN           RLLS/RLLD              HI                   ρbulk Σbulk ∆τ Caliper

Conventional APFN+ parameters 

Neutron Resistivity 

Higher sensitivity of APFN+ 



Conventional vs. APFN+ Logging – ‘Standard’ Logs
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B.Sc. Max R. Verdugo Ihl - TU Bergakademie Freiberg - UIT 16

Kaolinite

Kaolinite

Clay

Depth        NN           RLLS/RLLD              HI                   ρbulk Σbulk ∆τ Caliper

Conventional APFN+ parameters 

Neutron Resistivity 

Higher sensitivity of APFN+ 



Conventional vs. APFN+ Logging – ‘Standard’ Logs
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B.Sc. Max R. Verdugo Ihl - TU Bergakademie Freiberg - UIT

Sandy 
clay

Coarse
sand

Clay

Clay

Depth        NN           RLLS/RLLD              HI                   ρbulk Σbulk ∆τ Caliper

Conventional APFN+ parameters 

Neutron Resistivity 

Higher sensitivity of APFN+ 



Lithological Profiles from APFN+ (Example)

Conventional (subjective)

APFN+ based algorithm:
- High resolution
- Objective
- Shepard‘s nomenclature

for sand-silt-clay systems
(meanwhile extended)

Silty
sands

Silcrete
layers

Silty sand - clay Clay Sand-stone

Quantitative 
lithology

Linked to
uranium

mineralization
(pU3O8)

and porosity/
permeability
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Integrative Power of APFN+ - All by ONE Logging Tool

• Borehole parameters

– Borehole diameter (from H+ capture γ-peak) – validated against calliper tool

– Inclination (current upgrade) 

• U grade pU3O8: PFN technology improved (important corrections)

– Increased sensitivity (lower level of detection <0.005 wt%)

• γ-spectroscopy in passive mode → eU3O8 → disequilibrium / Th

• Hydrological parameters

– Hydrogen index measured → deduced (free-fluid) porosity → permeability

– Data plausible / validation against core assays and pump tests in progress

• Lithological logging

– Data quintuple from neutron channels to ‘calculate’ lithology (validated on 
the basis of extensive logging experience since early 2013)

– Elemental/mineral abundances from γ-ray spectroscopy (γ-rays from thermal-
neutron capture and inelastic scattering of fast neutrons)

→ focused on reactive minerals (clays, pyrite, calcareous minerals, lignite, …)

→ organic carbon still under investigation

Substitutes all conventional logging tools / all functions now in ONE TOOL
→ Much more information at much less logging costs



Moving theory to practice:

Reactive-transport modelling for optimizing ISR (acidic)
(and simulating mine-closure scenarios)  

Mineralogy
Type, abundance, 
surface properties,

texture

Composition,       
speciation        

(g.w., mining fluid)       

Water   
Chemistry    

Reaction rates
Solute residence 

times

Kinetics/
Interaction  

Advancements in Exploration and In-Situ Recovery
of Sedimentary-Hosted Uranium

URAM-2014



From Exploration Data to Acid ISR Performance
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Optimize
contact 

leachant-ore

Optimize
leachant
chemistry

Control ISR

Local hydrological model

- Wellfield design

- Flow rates/PVE

- Wellfield control (flow)

Reactive Transport Model/ 
Kinetic leach model

- U recovery curves as function of   
ore-leachant chemistry

- Consumption of chemicals

2D/3D
mapping of:

- Stratigraphy and
hydrogeology

- U grade (3D/
2D GT in ore 
horizons)

- Porosity/
permeability

- Abundance of
reactive minerals
(focus: main 
reductants, 
other gangue 
minerals 
influencing ISR
chemistry)

Quantify
hydrological
framework

of ISR

Regional hydrology model

- Regional groundwater flow

- Hydraulic connectivity 

(strata/tectonic faults)
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Wellfield Hydrology (Beverley North Example)

Wellfield flow pattern (modelled)
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Reactive Transport Model (UIT Code TRN)

Advection

Dispersion

Dual porosity

Thermodynamics

Kinetics

Database

PhreeqC

Data visualization

Data comparison

Transport 
Module

(no numerical dispersion)

Geochemistry
Module

GUI 
User Interface Real-world data

KEY to 
ISR performance

(USGS)
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Primary Mineral Phases – Secondary Phases

Ion exchange (CEC)

U chemistry

Reactive minerals
(source term)

Secondary phases
(solid, gaseous)

D
e

te
rm

in
e

 b
o

th
 I
S
R

 c
h

e
m

is
tr

y
 

a
n

d
 p

o
st

-m
in

in
g

 s
c

e
n

a
ri
o

s 
(N

A
)

Gypsum

Carbonates

Pyrite

Kaolinite +
other clays

Fe,Al phases

Oxidizing
Ferric Fe
minerals

pH neutralization

Organics

Coffinite
Uraninite

Reducing

CO2, H2S, …

U phases
e.g. UO2(a)



In-situ Leaching Kinetics
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Rate = r0 ⋅ [H+]a ⋅ [Ae-]b

pH value

Concentration of e- acceptors

= absolute oxidation potential
Well quantified for:

• Uraninite/coffinite

• Pyrite

• Organics

+

• Main neutralizing minerals   → Acid consumption

Rates from literature as far as available and quantified by lab 
testing. Validated by real wellfield performance (Beverley North)

Main competing reductants

{

Pyrite

Quartz

UO2

B
S
E
/Q

E
M

S
C

A
N
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Influence of Reducing Minerals and Mitigation

Demonstration of constraint leaching and countermeasures

Increasing abundance of reductants
(pyrite and/or organics)

Adjustment of leachant
chemistry based on model



Catalyzed ISR – Solving the REDOX Puzzle

Based on 

• Wellfield parameters including

– Effective pore volume and flow rates (from hydrological modelling), both 

determining the pore volume exchange rate

• Mineral abundances including

– Uranium ore grade

– Abundance of sulfidic minerals (e.g. pyrite)

– Abundance of organic matter (quantified as TOC)

the model identifies the chemical conditions (pH, oxidation potential) 
that maximises U leachability and recovery.

→ Recipe for conditioning/refortifying the injection fluid 
to catalyze U leaching efficiently
(to overcome interference by competing reductants).

• Field-tested in 2012/13 and meanwhile successfully implemented.

• Used for planning purposes and ISR control during operation.

• Key to reduce $/lb costs significantly.



SUMMARY – It works:

• Adaption of advanced seismic methodology 
of oil&gas industry (1-5 km) to high-resolution 
shallow seismic in sedimentary basins (< 500 m) 

• Advanced (self-correcting) PFN technology 
+ lithologic logging in just one tool 
(launched at Heathgate since March 2013)

• Move theory to practice: 
Kinetic leach model (reactive transport) 
implemented to optimize and control acid ISR
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