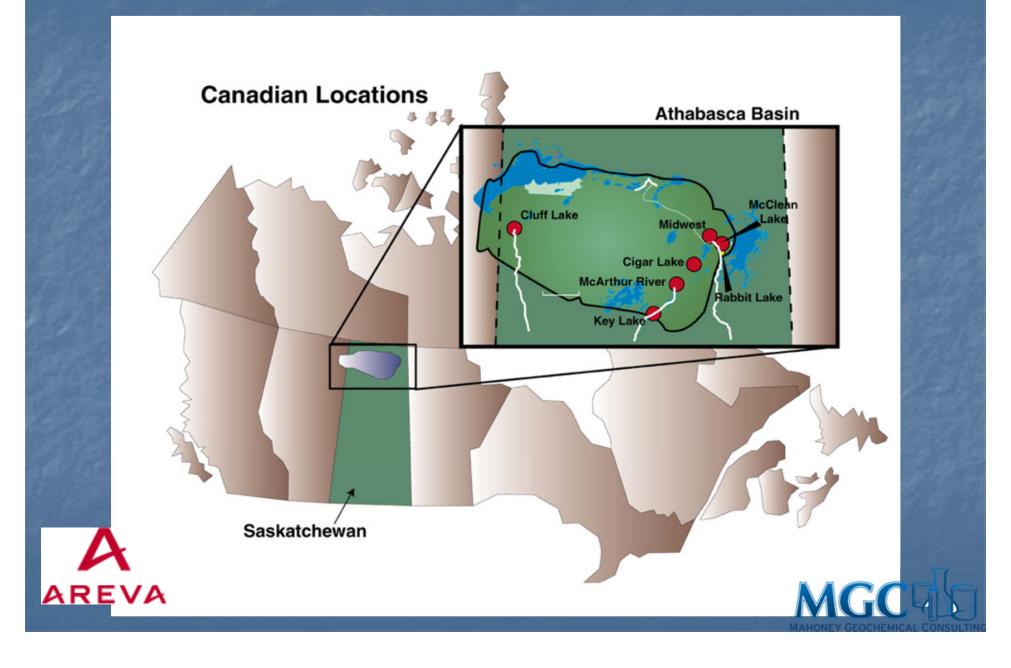
Calibration of a PHREEQC Based Geochemical Model to Predict Surface Water Discharge Compositions from an Operating Uranium Mill in the Athabasca Basin

John J. Mahoney, Ph.D.

Mahoney Geochemical Consulting, LLC

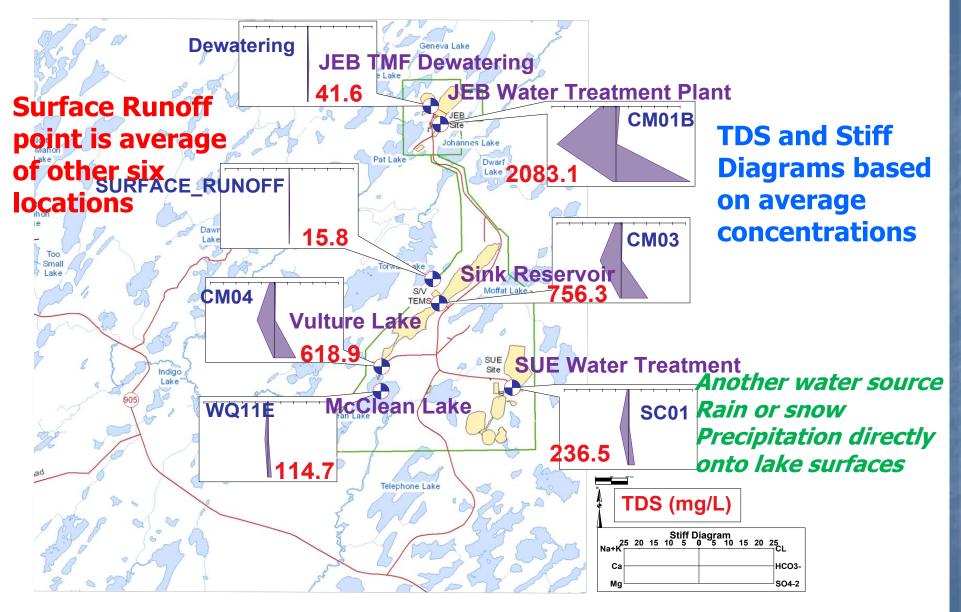
Ryan A. Frey

AREVA Resources Canada, Inc.



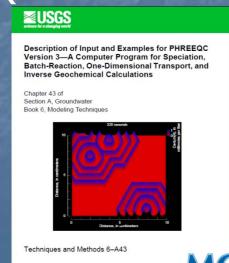
Objectives

- Develop predictive model to estimate concentrations in the Sink Vulture Treated Effluent Management System (SVTEMS) for AREVA Resources Canada McClean Lake Mill
 - Sink Reservoir, Vulture and McClean Lakes
 - PHREEQC based calculations for geochemistry
 - Employ PHREEPLOT for data fittings
- Model designed to predict concentrations in response to changing conditions, including:
 - Different ores
 - Different processes
 - Different waters sources
 - Changing treatment conditions
- This is a batch mixing model
 - Think well mixed beakers
 - Each model represents one year
 - No year-to-year carry over in models



Location Map

McClean Lake Mill and JEB TMF



What is PHREEQC?

- PHREEQE (1980) pH Redox Equilibrium Equations
- Performs aqueous geochemical modeling
 - Calculates activities of a component set
 - Calculates distribution of species in solution
 - Calculates mineral saturation indices
 - Mass transfer capabilities mix, equilibrate, precipitate
- PHREEQC (1995, 1999, 2013) written in C language
 - Batch, Interactive and COM versions available
 - Public domain (USGS) ongoing support (David Parkhurst)
- PHREEQC Capabilities
 - Mixing of multiple solutions
 - Equilibration with gases/minerals
 - Surface complexation models
 - Ion exchange
 - Irreversible reactions/evaporation
 - Kinetics Rate controlled processes

Conceptual Hydrogeochemical Model with Water Balance

TMF Dewatering Wells Constant Composition

Sue Water Treatment Plant

JEB Water
Treatment Plant

Surface Waters
Constant Composition

Collins Creek

Mineral formation
Surface complexation

formation possible

Vulture Lake

Sink Reservoir

- Precipitation

Evaporation

Precipitation

Evaporation

McClean Lake

PrecipitationEvaporation

Updated Thermo Database

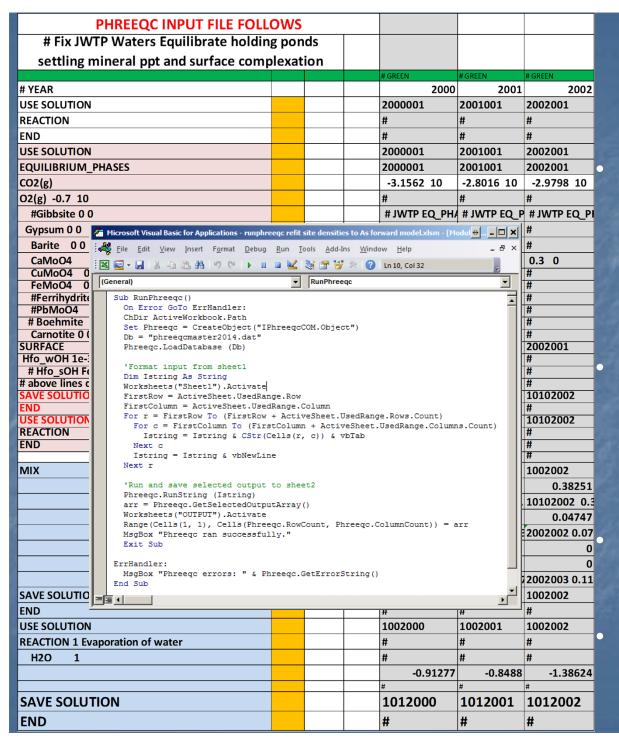
- WATEQ4F.DAT PHREEQC Version 2.0 HEAVILY REVISED
- Uranium
 - > OECD NEA (Guillaumont 2003) for uranyl complexes
 - Diffuse layer parameters for HFO uranyl surface complexation (Mahoney et al. 2009) for NEA database replaced Dzombak and Morel (D&M) values
 - Dong and Brooks (2006) divalent uranyl carbonates
 - Removed $UO_2(HPO_4)_2^{-2}$ and $UO_2(H_2PO_4)_3^{-1}$ per Grenthe et al. 1992

Arsenic

- Langmuir, Mahoney & Rowson (2006) for metal As complexes, and Scorodite
- Marini and Accornero (2007) more metal As complexes, with 2010 corrections
- Diffuse layer surface complexation constants from Gustafsson and Bhattacharya (2007) replaced D&M values
- Molybdenum
 - Surface reactions/values by Gustafsson (2003) replaced D&M values
 - NiMoO4 solid by Morishita and Navrotsky (2003)
- Gibbsite Surface Complexes Karamalidis and Dzombak (2010)

Overview

- Use Water Balance from 2000 to 2011 to estimate proportions of different waters
- Water compositions from monitoring points
- Originally used EXCEL to:


- Calculate mixing proportions for PHREEQC input
- Calculate evaporation losses
- Write majority of input file
- Block and copy into PHREEQC

	Water Balance Calculations (m ² /year)											
	Direct Sources			Precipitation Rain/Snow			Calc groundwater, streams & runoff			Evaporation		
Year	Dewatering Wells	CM01B	SC01	Sink	Vulture	McClean	Sink	Vulture	McClean	Sink	Vulture	McClean
2000	2110337	1548498	1075486	89842	269525	822875	0	1773184	42029593	85750	257250	785400
2001	2328796	1476709	1303234	108731	326193	995887	0	1987207	40740609	85750	257250	785400

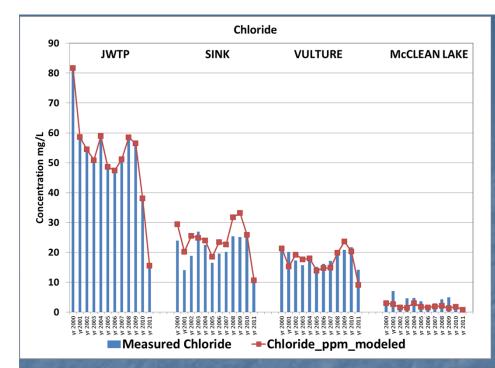
unita m³/		Voor	Solution #	2000	2001	2002	
units m ³ /year		Year		2000			
	25:	D-Wells to Sink	200	2,110,337	2,328,796	1,314,516	
	001	CM01B	102000001	1,548,498	1,476,709	1,300,817	
		PRECIPITATION	100	89,842	108,731	163,146	
SINK	002	SC01	2000002	1,075,486	1,303,234	263,083	
INPUTS		Calc groundwater, streams & runoff	300	0	0	0	
		EXTRA SOURCE NOT INCLUDED	400	0	O	0	
	003	WATER IN SINK AT START OF YEAR	2000003	395000	395000	395000	
VOLUME Sum use for	or mixin	g proportions		5,219,163 5,612,470		3,436,562	
Calc input to Sir	k FRON	1 WATER BALANCE		4,738,413	5,131,720	2,955,812	
Eva	Evaporation LOSS			85,750	85,750	85,750	
		CHECK				2 250 012	
		CALCULATION				3,330,812	
		D-Wells to Sink		0.404	0.404 0.415		
		CM01B		0.297	0.263	Con	
		PRECIPITATION		0.017	0.019	Can	
		SC01		0.206	0.232	ad	
MIXING		Calc groundwater, streams & runoff	300	0.000	0.000	au Extra	
CALCULATION		EXTRA SOURCE NOT INCLUDED		0.000		time)	
		SINK WATER PREVIOUS YEAR		0.076	0.070		
		SUM		1.000	1.000		
		FRACTION EVAP LOSS		0.0164	0.0153	0.0250	
EVAPORATION CALCULATION		Reactant Amount for evaporation		-0.913	-0.849	-1.386	
		MIXING PROPORTION FOR volume correction		1.016	1.015	1.025	

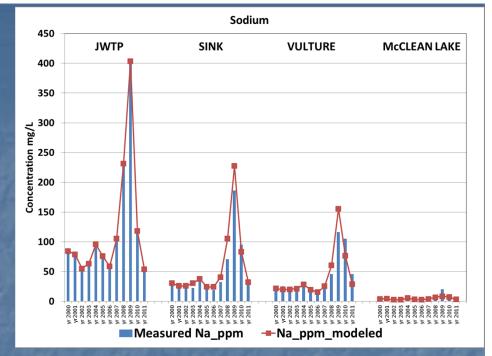
Water Balance Converted to Mixing Proportions

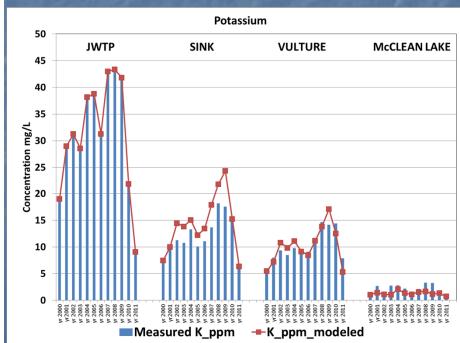
Can easily expand and add additional years Extra water (blank at this time) available to modify model

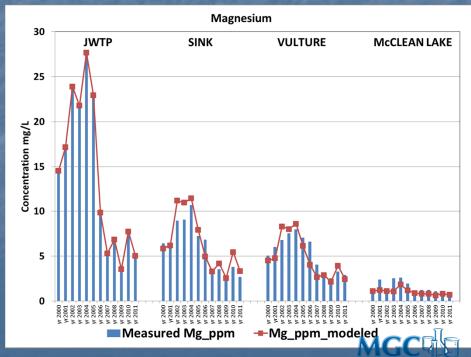
Preparation of PHREEQC Model

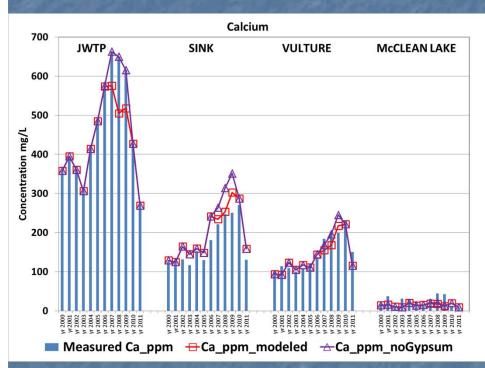
- We are writing a program using the PHREEQC syntax
 - SOLUTION_SPREAD
 - PRINT
 - SELECTED OUTPUT
 - USER PUNCH
- Followed by mixing and reaction sections for each year
 - Each year is about 200 lines
 - Total File ~2800 lines
- Color coded section in EXCEL to simplify revisions
- Now using IPHREEQC.COM

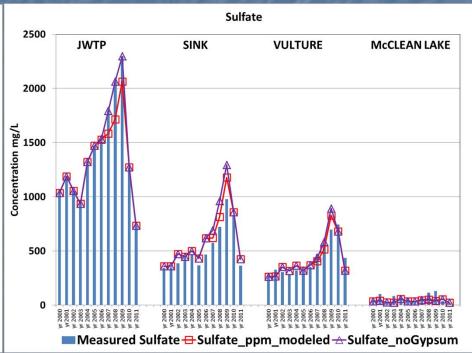

- "Pluralitas non est ponenda sine neccesitate"
 - Pluralities should not be posited without necessity
 - One should not increase, beyond what is necessary, the number of entities required to explain anything
- Using generally accepted geochemical principles with only slight adjustments
 - Dominantly mixing processes
 - Equilibration with atmospheric gases and simple minerals
 - Adjusted one solubility product constant (Powellite)
 - Lower surface site density values about 1/2



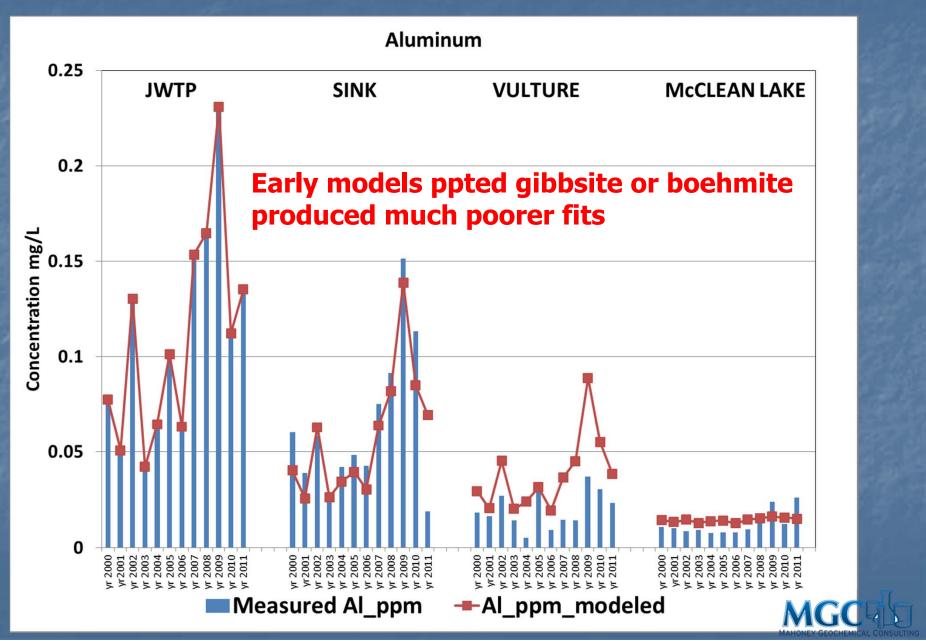

Conservative Species


- Na, K, Mg, Cl Most conserved
 - Good matches between observed and modeled values
 - Mixing based upon water balance only process
- Minimal attenuation Sulfate, Ca
 - Gypsum (CaSO₄:2H₂O) precipitation if oversaturated
 - Only three samples from JWTP oversaturated
- Aluminum appears to be conserved
 - Most samples
 - Early models looked at gibbsite [Al(OH)₃] or boehmite (AlOOH) precipitation
 - Produced poorer fits downstream
 - Maybe sulfate inhibits Al precipitation?





Calcium and Sulfate



Gypsum Precipitation in Three Waters

Aluminum

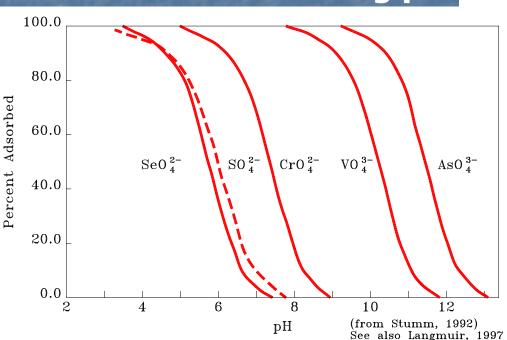
Reliability of Water Balance and Analyses

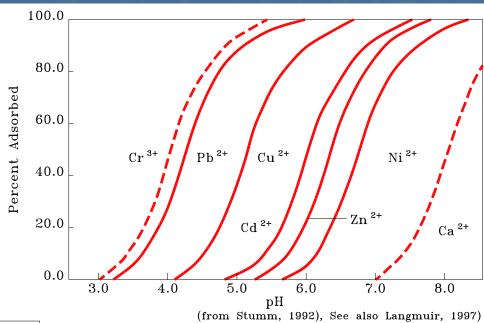
- Agreement between modeled and observed concentrations for conserved species demonstrate that the conceptual model, water balance, analyses and the calculations using PHREEQC are correct
- Allows insights into reactive trace metals and other species such as ammonia

Optimization with PhreePlot

PhreePlot Creating graphical output with PHREEQC David Kinniburgh David Cooper

- PHREEQC with data fitting functions
 - Iterative process between observations and modeled concentrations
 - Calculates Weighted Residual Sum of Squares
 - Minimizes (W)RSS
 - Rigorously fitted parameters
- Used to model As and U surface complexation on Ferrihydrite (HFO)
 - Sorption onto a surface
 - Hydrous Ferric Oxide (HFO)
 - HFO comes from dissolved iron in discharges
- Originally adjusted HFO concentrations –
 JWTP, then Sink Reservoir
 - Applied to estimate HFO sites_per_mole value based upon HFO precipitation
- Fit molybdenum solubility product

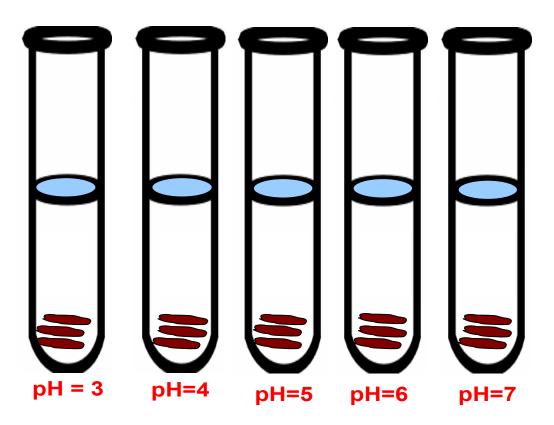



Surface Complexation Reactions

Provides alternative method to remove compounds from solution

Often occurs at concentrations less than the solubility limit

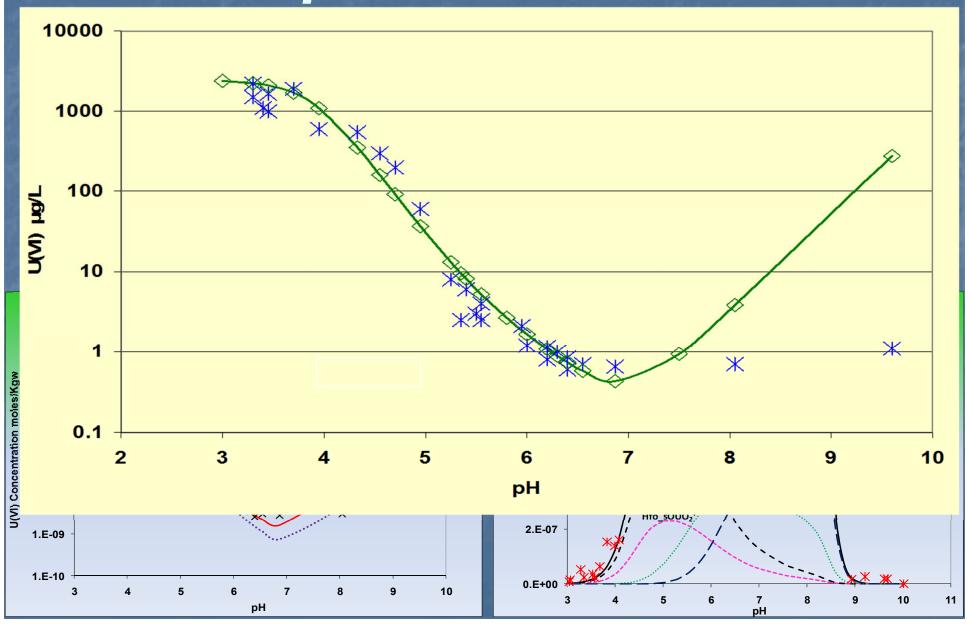
Anions decrease sorption on HFO with increasing pH


Cations increase sorption on HFO with increasing pH

Because of complexation with carbonate uranium increases then decreases

Uranium Adsorption Experiments

Initial Composition U(VI) = 2,380 μ g/L, in 0.1NaNO₃


1g/L Ferrihydrite

 $2,380 \mu g/L = 1.0 \times 10^{-5} \text{ m U}$

No Carbonate Present

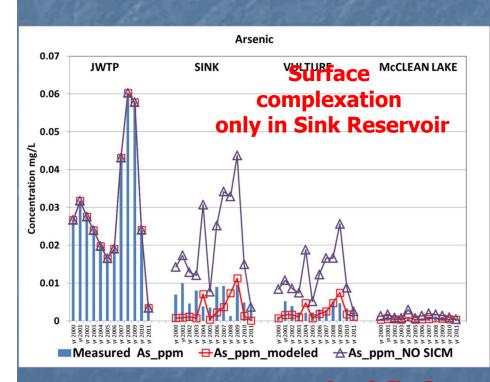
Refit of Uranium Surface Complexation Reactions

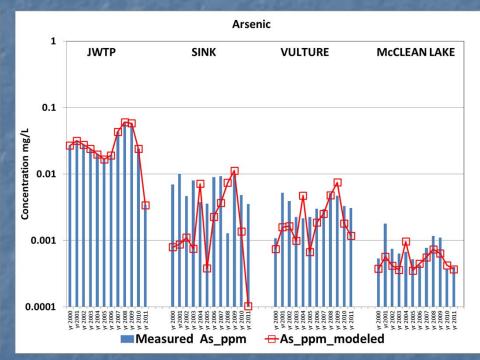
Surface Complexation Reactions for NEA database

Hfo_sOH +
$$UO_2^{+2}$$
 = Hfo_sOU O_2^{+} + H⁺ log_k 3.792 D&M = 5.2

 $Hfo_wOH + UO_2^{+2} = Hfo_wOUO_2^+ + H^+$

Need to estimate surface site concentrations of Hfo_wOH and Hfo_sOH

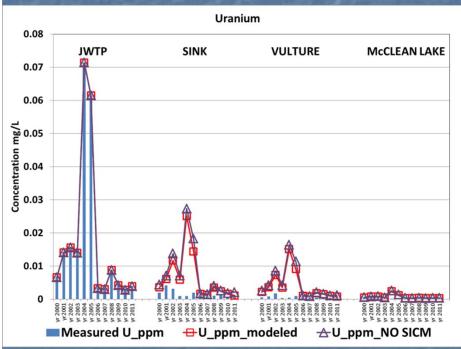

Hfo_wOH +
$$UO_2^{+2}$$
 + $2CO_3^{-2}$ = Hfo_wOUO₂(CO_3)₂⁻³ + H⁺ log_k 15.28 D&M not included

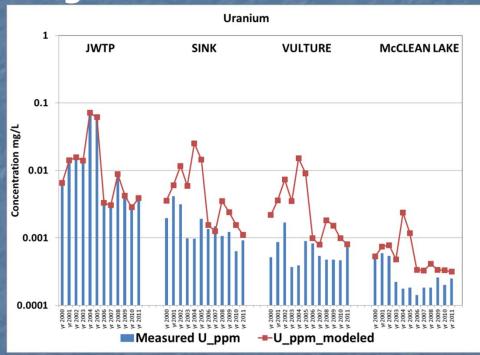


Arsenic With and Without Surface Complexation

Linear Concentration Scale

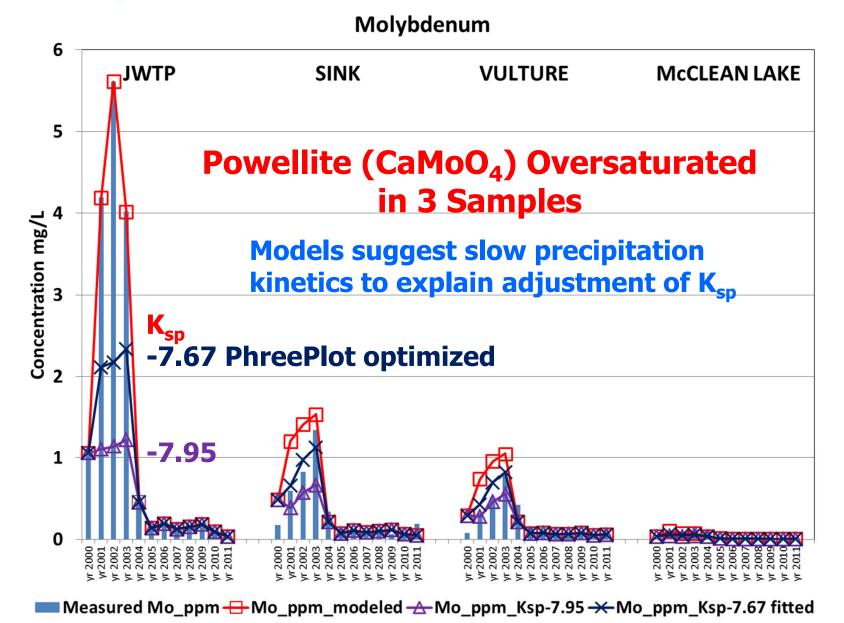
Log Concentration Scale

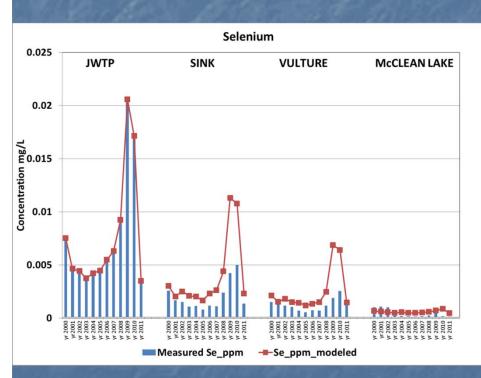

Final fit from PHREEPLOT
Uses 0.09 for first six points, and
0.129 for last six points for site density function

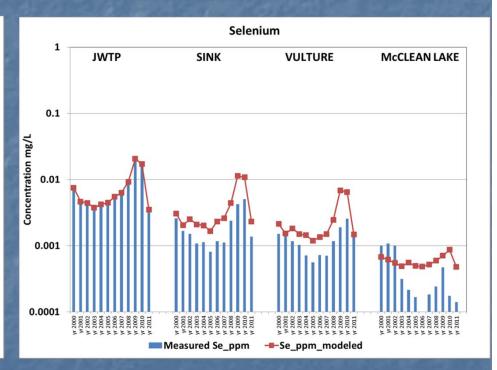


Uranium

Linear Concentration Scale




Deliberately selected lower site concentration to match As More conservative setup for Uranium i.e., produces higher modelled values

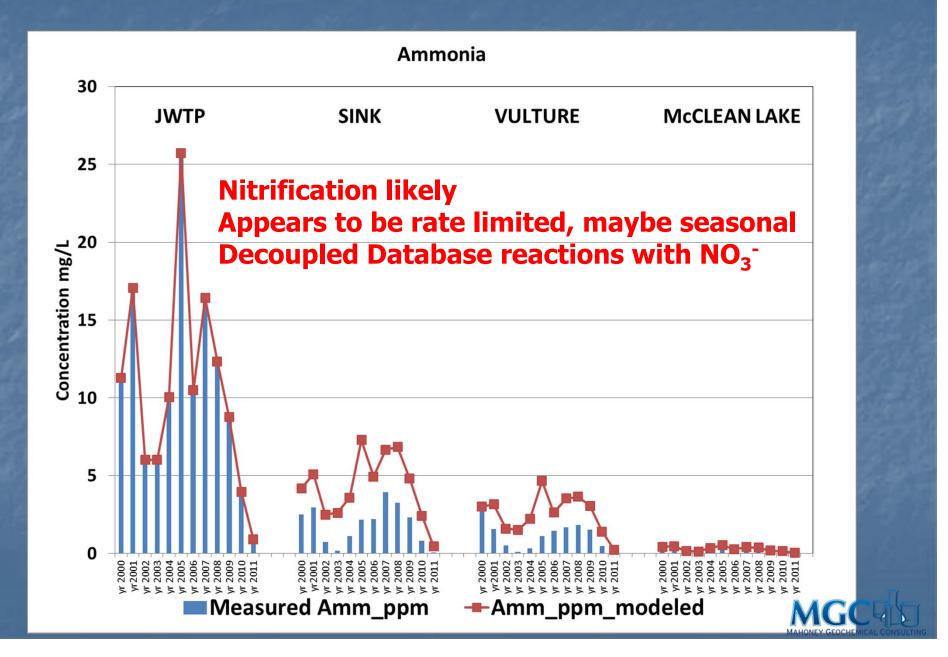

Molybdenum Precipitation - Powellite $K_{sp} = -7.95$ and -7.67 (PhreePlot Fitted)

Selenium

Linear Concentration Scale Log Concentration Scale

Continuing Work

- Evaluate Seasonal and Redox Effects
 - Three samples per year
 - Evaluate seasonal effects
 - Better handle on redox processes
 - Iron related processes
- pH and better estimate of CO₂(g) PP
- Iron needs additional work
 - Poor observed/modeled matches in Sink Reservoir, but
 - Good matches in Vulture and McClean Lakes
- Possible role of humic substances
 - Redox control
 - Sorbent phase



Conclusions

- Good predictions for conservative species:
 - Cl, Mg, K, Na, Ca, Sulfate, (Al)
 - Reliability of water balance and analyses
 - Mainly mixing of waters and dilution
 - No reason to change water balance/mixing proportions
- Better than order of magnitude fits for trace metals
 - Often within a factor of ± 2.0, but most within 25% RPD
 - Some elements agree down to ppb levels
- Surface complexation attenuates As and U
- Precipitation of powellite (CaMoO₄) explains Mo concentrations
- Conservative assumptions used in model setup
 - Not all possible attenuation processes included
 - Slight overestimates for uranium, selenium, ammonia

Ammonia is Consumed

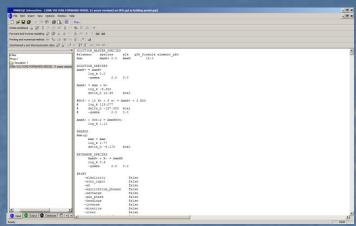
SURFACE SITE CALCULATIONS

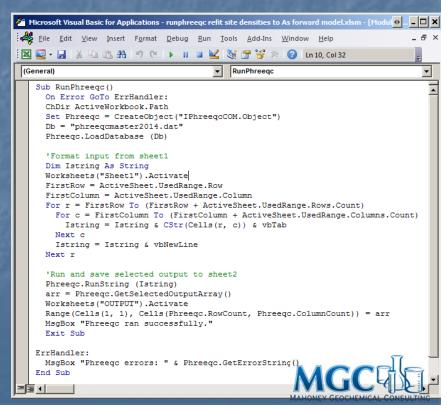
```
SURFACE 4 # user defined surface site concentration Hfo_wOH <Hfo_CONC> 600 0.045  
Hfo_SOH <strong>
```

Alternative method EQ_P and Surface keywords linked

```
EQUILIBRIUM_PHASES 3
O2(g) -0.7 10 # oxygen at atmospheric pressure
CO2(g) -3.5 10 # carbon dioxide at atmospheric pressure
```

SURFACE 3
Hfo_wOH Ferrihydrite equilibrium_phase <sitedens> 53400
Hfo_sOH Ferrihydrite equilibrium_phase


Uses PHREEPLOT to adjust **<sitedens>** to optimize fit between measured and modeled arsenic concentration in Sink, Vulture and McClean Lakes


PHREEPLOT will also calculate site concentration in agreement with the <sitedens> value and original D&M assumptions

IPhreeqcCOM Module

- Original Version of Model
 - EXCEL File Setup
 - model is copied into PHREEQCi
 - Water compositions pre-loaded
 - Supporting keywords pre-loaded
 - Output file and selected output file
- Now IphreeqcCOM
 - Component Object Module
 - Can run as module in VBA macro in EXCEL
 - Whole process is run within EXCEL
 - Water balance, mixing calculations, PHREEQC syntax,
 - Run macro
 - Reads PHREEQC input file
 - Write selected output to sheet
 - Facilitates preparation of graphics
 - Improves tracking of models

