

URAM2014, 23 to 27 June 2014, Vienna, Austria

Granite-related Hypothermal Uranium Mineralization in South China

Xiaodong Liu, Jianhua Wu, Jiangyong Pan, Mingqian Zhu

East China Institute of Technology

June 24, 2014

1. Classification of Uranium Deposits in China

- 2. Metallogenic Region Subdivisions for Uranium Deposits
- **3. Tectonic Cycle to Uranium Mineralization**
- 4. Hypothermal Uranium Mineralization
- 5. Discussion

1. Clssification of U Deposits in China

IAEA 2013 new classification: 15 types with 36 subtypes

- 1) Intrusive
 - 2) Granite-related
 - 3) Polymetallic iron-oxide breccia complex (IOCG)
 - 4) Volcanic-related
 - 5) Metasomatite
 - 6) Metamorphite
 - 7) Proterozoic unconformity
 - 8) Collapse-breccia pipe
 - 9) Sandstone
 - 10) Paleo-quartz-pebble conglomerate
 - 11) Surficial
 - 12) Lignite-coal
 - 13) Carbonate
 - 14) Phosphate
 - 15) Black shale

1. Clssification of U Deposits in China

On the basis of host rocks, the uranium deposits were traditional classified into four major types:

- 1) Granite type & Granite-related (endogranite)
- 2) Volcanic rock type & Volcanic-related (structure-bound)
- **3)** Sandstone type & Sandstone (roll-front/tabular)
 - 4) Carbonaceous-siliceous- argillaceous rock type

&

Carbonate or black shale type

5) Other type

No typical Proterozoic unconformity and Paleo-quartzpebble conglomerate type deposits up to now.

(New suggestion on classification- Zhang, 2012, Li, 2013)

Shares of different type uranium deposits

2. Metallogenic Region Subdivisions for Uranium Deposits

According to geological setting and the spatial distribution of different type uranium deposits:

The metallogenic region subdivisions were previously divided into: 5 uranium provinces 18 metallogenic regions / belts in 3 regional geological domains

2. Metallogenic Region Subdivisions for Uranium Deposits

New subdivisions (BOG, CNNC, 2012):

- 4 uranium metallogenic domains:
 - a, Paleo-Asian b, Qin-Qi-Kun
 - c, Marginal-Pacific d, Tethys
- 11 uranium provinces
- 49 metallogenic regions / belts

Most of the discovered U deposits located in Marginal-Pacific domains with the mineralization age of Mesozoic- Cenozoic.

| m to to m - 1 to | | | | | | |
|------------------|----------|-----------------|---|--|--|--|
| Domain | No. of | Name of | Region/ Belt | | | |
| | Province | province | | | | |
| | II-1 | Aertai-Zhungeer | III-1 Aertai potential belt | | | |
| | | | III-2 Zhungeer potential region | | | |
| | | | III-3 Xuemisitan potential belt | | | |
| | | | III-4 Wurunguhe potential belt | | | |
| Paloo Asian | | | III-5 North Tianshan potential belt | | | |
| I alco-Asian | 11.2 | Tianshan | III-6 South Tianshan belt | | | |
| | 11-2 | Tansnan | III-7 Yili basin region | | | |
| | | | III-8 Tuha basin region | | | |
| | II-3 | Talimu | III-9 North Talimu belt | | | |
| | | | III-10 South Talimu potenitial belt | | | |
| | 11.4 | Qinqi-Kunlun | III-11 West Kunlun potential belt | | | |
| | | | III-12 Qimantage potential belt | | | |
| | 11-4 | | III-13 Talimu basin potential region | | | |
| Qin-Qi-Kun | | | III-14 Longshoushan-Qilianshan belt | | | |
| | 11-5 | Qinling-Dabie | III-15 South Qinling belt | | | |
| | | | III-16 North Qinling belt | | | |
| | | | III-17 Jingzai belt | | | |
| | II-6 | Daxinganling | III-18 Erlian basin region | | | |
| | | | III-19 Badanjilin-Bayinggebi region | | | |
| | | | III-20 Eerguna-Manzhouli potential belt | | | |
| Marginal-Pacific | | | III-21 Zalantun potential belt | | | |
| | II-7 | Jihei | III-22 Songliao basin region | | | |
| | | | III-23 Dunhua-Mishan potential belt | | | |
| | | | III-24 Yichun potential belt | | | |

| 一大い | Domain | No. of
Province | Name of province | Region/ Belt | |
|-----|------------------|--------------------|-----------------------|--|--|
| ľ | | 11-8 | North China
Craton | III-25 East Liaoning belt | |
| | | | | III-26 Xincheng-Qinglong belt | |
| | | | | III-27 Guyuan-Hongshanzi belt | |
| | | | | III-28 Ordos basin region | |
| | | | | III-29 Chaoshui basin region | |
| | | | | III-30 South Margin of North China | |
| | | | | Craton belt | |
| | | c II-9 | Yangzi Craton | III-31 Middle and lower reaches of | |
| | | | | Yangtze River belt | |
| | | | | III-32 Tianmushan belt | |
| | | | | III-33 Xiushui-ningguo belt | |
| | Manainal Dasifia | | | III-34 Middle Hunan belt | |
| | Marginal-Pacific | | | III-35 Xuefeng-Mutianling Belt | |
| | | | | III-36 Middle Guizhou-Northwest Hunan belt | |
| | | | | III-37 Damingshan belt | |
| | | | | III-38 Sichuang basin region | |
| | | | | III-39 Kham-Dian (West Sichuan-Yunnan) Axis
potential belt (IOCG type?) | |
| | | | South China | III-40 Gang-Hong belt | |
| | | II-10 | | III-41 Wuvishan belt | |
| | | | | III-42 Taoshan-Zhuguang belt | |
| _ | | | | III-43 Chengzhou-Oingzhou belt | |
| | | | | III-44 Leming basin potential region | |
| | | II-11 | Gangdisi-Sanjiang | III-45 Tengchong region | |
| | | | | III-46 Linchang region | |
| | Tethys | | | III-47 Duchang potential belt | |
| | | | | III-48 Bange-Jialing potential belt | |
| | | | | III-49 Chuoqing-Nanmulin potential belt | |

3. Tectonic Cycle to Uranium Mineralization

In regional:

Mesozoic – Cenozoic epoch is the most important mineralization age in China. In space: 86% discovered ore deposits located in East China marginal-pacific domain. In time: most of the ore deposits formed at the age of 180Ma to 80Ma (Yanshanian epoch) " Large-scale metallogenesis age" ----- (Mao et al ,2005)

Granite-related and volcanic-related Uranium

mineralization in China share the same characteristics in space& in time.

Age (Ma) What is the relations of tectonic cycle in Mesozoic- Cenozoic to U mineralization?

3.1 Major tectonic- magmatic stages of Yashanian epoch in SE China

In Ganhang belt:

Two tectonic-magamatic sub-cycles Stage 1 and 2 of late Yanshanian epoch (145—100Ma) Stage 3 of late Yanshanian epoch (100—65Ma)

In Taoshan-Zhuguang belt:

Four tectonic-magamatic sub-cycles Stage 1 of early Yanshanian epoch (205—165Ma) Stage 2 of early Yanshanian epoch (165—145Ma) Stage 1 and 2 late of Yanshanian epoch (145—100Ma) Stage 3 of of late Yanshanian epoch (100—65Ma)

3.2 The relation of tectonic cycles to U mineralization in East China

| Tectonic
Period | Age(Ma) | Major tectonic-magamtic activities | Geodynamic | Relation to U mineralization |
|---|--|--|---|--|
| Late
Yanshanian
epoch
Stage 3 | 100-65
(K ₂) | 1.depression basins (Erlian Basin)2.basic and acidic dikes, calc alkalic series | NW-SE
extension | epithermal U mineralization favorable braided river sedimentary
system after the tectonic inversion |
| Late | 110-100 | Tectonic inversion Unconformity between K₂ and K₁ | Near SN
compression | Favorable near SN extension-ductile
faults& fractures by NE left-lateral
movement |
| Yanshanian
epoch
Stage 2 | 125-110
(K ₁ ²) | thick continental lithospheric thinning by
extension in East China fault subsidence basin, basin and range tectonics bimodal volcanic rocks, shoshonite, I type and A
type granites related to mantle-crust interaction | NW-SE | hypothermal U mineralization
related to porphyry? favorable calc alkalic
volcanic-subvolcanic host rocks for
U mineralization |
| Late
Yanshanian
epoch
Stage 1 | 145-125
(K ₁ ¹) | 1.large scale K-rich calc alkalic
volcanic-subvolcanic rocks in East China 2. transition of compression tectonics to extension
tectonic | extension | |
| Early
Yanshanian
Epoch
Stage 2 | 165-145
(J ₃) | multi-direction convergent orogen, crust
lithospheric thickening large scale S type granites transition of near EW tectonics to NE tectonics large scale thrust belts and foreland basins | Multi-direction
convergent
orogen of three
tectonic
domains | U-rich S type granites in South China
as the favorable host rocks |
| Early
Yanshanian
Epoch
Stage 1 | 205-165
(J ₁ -J ₂) | J₁-J₂ depression basin J₁-J₂ A type granites and bimodal volcanic rocks in South China tectonic inversion in J_{2z} depression basin | Near SN
extension | basin tectonic inversion yielded the
favorable sedimentary sequences,
such as J ₂ z formation in Erdos
basin |
| Late
Indo-Chinese
Epoch | 230-205
(T ₃) | large scale continental block collage,
unified Europe – Asia plate near EW orogen, folds in covering and the
thrust tectonics S type granites of Indo-Chinese epoch foreland basins (Erdos basin, Sichuang basin) | Continental
collision | U-rich S type granite of Indo-Chinese
epoch in South China as the
favorable host rocks |

4. Hypothermal Uranium Mineralization

Two uranium metallogenic systems in SE China ?

4.1 Characters of epithermal mineralization

Type of ores :vein typeAlteration:silicification, fluoritizationUranium mineral:pichblendeMineralization age:< 100Ma</td>Mineralization T:< 250° C</td>Gap (H/M):bigMineralization mechanism: mixing of ancient meteoric

water with underground circulation fluids

Gap: Time gap between host rock and mineralization

Example : Mianhuakeng Deposit in North Guangdong

Section of Mianhuakeng Deposit

* Endogranitic * Structure – control

4.2 Granite-related hypothermal uranium mineralization

In contrast to the characteristics of typical granite-related epithermal uranium mineralization:

- * middle to high temperature mineral assemblage and alterations
- * disseminated/stockwork uranium ores in fissuration granite with extensive potassic alterations
- * relatively older mineralization age with the superimposed reformation of late epithermal mineralization

Recognized by researchers:

Hu et al. 2003, Tan et al. 2005, Du et al. 2006, 2009 etc. *Beresitization (pyritized phyllite) type* --- by Prof. Du in 2006, 2009

Example 1: Zhushanxia deposit in Xiazhuang U ore field

Thin section of ore photo: (-) x25

- * extensive potassic alteration with biotitization in ductile zone
- * uraninite + scheelite, with tourmaline (U: 0.24-0.56%, W: 0.3%)
- * age of uraninite: 146~165.5Ma (Hu et al, 2003)

Example 2: Shituling deposit in Xiazhuang U ore field

- 1, middle grain -porphyritic biotite granite;
- 2, fine grain two-mica granite;
- 3, diabase
- 4, ductile fracture zone
- 5, fractured silicification zone
- 6, ore body
- 7, tunnel
- 8, drilling hole

Example 2: Shituling Deposit in Xiazhuang U ore field

Micro-vein/disseminated Ore (Du et al., 2006)

Age of host granite: 238 ± 2.3 Ma Age of U mineralization: 130-138Ma Mineralization temperature: 290-338C

* extensive potassic aleration, chloritization and sericitization in fissuration granite
* uraninite, coffinite and pichblende in black chlorite and sericite micro-veins

(Du et al. 2006)

Thin section photo of fissuration granite (+) x 33

Alpa track photo x 33

Fine grain uraninite aggregate in granite

Pichblend microvein and Stockwork in fracture zone

4.3 General characteristics of hypothermal U mineralization

Type of ore: disseminated/stockwork in fissuration rocks **Alterations: alkaline metasomatism (potassic alteration)**, beresitization **Uranium minerals: uraninite, coffinite** Mineralization age: > 100Ma Mineralization T: > 250 °C **Gap(H/M):** small, might related to small porphyry? **Mineralization mechanism:** boiling/mixing of fluids with ore forming solution derived from deep.

5. Discussion

More and more evidence indicates that there are multi-stages uranium mineralization in many granite-related uranium deposits in south China.

The early stage mineralization shares the characters of hypothermal U mineralization and had close relations to alkaline alterations.

- * Evidence indicates the mixing of ore forming solution derived from deep (upper mantle?).
- * Mineralization mechanism dominated by boiling and mixing of ore forming solution.
- * Uranium mineralization priority occurred in the areas with lithospheric extension in crust thickening geological setting.

5. Discussion

- Contract term to "epithermal U mineralization", it's not the typical intrusive high temperature mineralization.
- * Detail studies needed, such as the mineralization ages, alterations and fluid inclusion for hypothermal mineralization.
- * Relation of hypothermal mineralization to late epithermal uranium mineralization?
- * New target for future exploration?

