Granite-related Hypothermal Uranium Mineralization in South China

Xiaodong Liu, Jianhua Wu, Jiangyong Pan, Mingqian Zhu

East China Institute of Technology

June 24, 2014
1. Classification of Uranium Deposits in China

2. Metallogenic Region Subdivisions for Uranium Deposits

3. Tectonic Cycle to Uranium Mineralization

4. Hypothermal Uranium Mineralization

5. Discussion
1. Classification of U Deposits in China

IAEA 2013 new classification: 15 types with 36 subtypes

1) Intrusive
 2) Granite-related
 3) Polymetallic iron-oxide breccia complex (IOCG)
 4) Volcanic-related
 5) Metasomatite
 6) Metamorphite
 7) Proterozoic unconformity
 8) Collapse-breccia pipe
 9) Sandstone
 10) Paleo-quartz-pebble conglomerate
 11) Surficial
 12) Lignite-coal
 13) Carbonate
 14) Phosphate
 15) Black shale
1. Classification of U Deposits in China

On the basis of host rocks, the uranium deposits were traditionally classified into four major types:

1) Granite type & Granite-related (endogranite)
2) Volcanic rock type & Volcanic-related (structure-bound)
3) Sandstone type & Sandstone (roll-front/tabular)
4) Carbonaceous-siliceous-argillaceous rock type & Carbonate or black shale type
5) Other type

No typical Proterozoic unconformity and Paleo-quartz-pebble conglomerate type deposits up to now.

(New suggestion on classification- Zhang, 2012, Li, 2013)
Uranium resources

- granite type: 28.5%
- volcanic type: 21.2%
- sandstone type: 35.4%
- Carbonaceous-siliceous-pelitic rock type: 10.5%
- Other: 4.4%
According to geological setting and the spatial distribution of different type uranium deposits:

The metallogenic region subdivisions were previously divided into:

- **5 uranium provinces**
- **18 metallogenic regions / belts**

in 3 regional geological domains
2. Metallogenic Region Subdivisions for Uranium Deposits

New subdivisions (BOG, CNNC, 2012):

4 uranium metallogenic domains:
- a, Paleo-Asian
- b, Qin-Qi-Kun
- c, Marginal-Pacific
- d, Tethys

11 uranium provinces

49 metallogenic regions / belts

Most of the discovered U deposits located in Marginal-Pacific domains with the mineralization age of Mesozoic- Cenozoic.
New Metallogenic Region Subdivisions for U Deposits in China

(Zhang et al. 2012)
<table>
<thead>
<tr>
<th>Domain</th>
<th>No. of Province</th>
<th>Name of province</th>
<th>Region/ Belt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleo-Asian</td>
<td>II-1</td>
<td>Aertai-Zhungeer</td>
<td>III-1 Aertai potential belt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-2 Zhungeer potential region</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-3 Xuemisitan potential belt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-4 Wurunguhe potential belt</td>
</tr>
<tr>
<td></td>
<td>II-2</td>
<td>Tianshan</td>
<td>III-5 North Tianshan potential belt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-6 South Tianshan belt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-7 Yili basin region</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-8 Tuha basin region</td>
</tr>
<tr>
<td></td>
<td>II-3</td>
<td>Talimu</td>
<td>III-9 North Talimu belt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-10 South Talimu potential belt</td>
</tr>
<tr>
<td>Qin-Qi-Kun</td>
<td>II-4</td>
<td>Qinqi-Kunlun</td>
<td>III-11 West Kunlun potential belt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-12 Qimantage potential belt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-13 Talimu basin potential region</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-14 Longshoushan-Qilianshan belt</td>
</tr>
<tr>
<td></td>
<td>II-5</td>
<td>Qinling-Dabie</td>
<td>III-15 South Qinling belt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-16 North Qinling belt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-17 Jingzai belt</td>
</tr>
<tr>
<td></td>
<td>II-6</td>
<td>Daxinganling</td>
<td>III-18 Erlian basin region</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-19 Badanjilin-Bayinggebi region</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-20 Eerguna-Manzhouli potential belt</td>
</tr>
<tr>
<td></td>
<td>II-7</td>
<td>Jihei</td>
<td>III-21 Zalantun potential belt</td>
</tr>
<tr>
<td>Marginal-Pacific</td>
<td></td>
<td></td>
<td>III-22 Songliao basin region</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-23 Dunhua-Mishan potential belt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III-24 Yichun potential belt</td>
</tr>
<tr>
<td>Domain</td>
<td>No. of Province</td>
<td>Name of Province</td>
<td>Region/ Belt</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Marginal-Pacific | II-8 | North China Craton | III-25 East Liaoning belt
III-26 Xincheng-Qinglong belt
III-27 Guyuan-Hongshanzi belt
III-28 Ordos basin region
III-29 Chaoshui basin region
III-30 South Margin of North China Craton belt |
| | II-9 | Yangzi Craton | III-31 Middle and lower reaches of Yangtze River belt
III-32 Tianmushan belt
III-33 Xiushui-ningguo belt
III-34 Middle Hunan belt
III-35 Xuefeng-Mutianling Belt
III-36 Middle Guizhou-Northwest Hunan belt
III-37 Damingshan belt
III-38 Sichuang basin region
III-39 Kham-Dian（West Sichuan-Yunnan）Axis potential belt（IOCG type?） |
| | II-10 | South China | III-40 Gang-Hong belt
III-41 Wuyishan belt
III-42 Taoshan-Zhuguang belt
III-43 Chengzhou-Qingzhou belt
III-44 Leming basin potential region |
| Tethys | II-11 | Gangdisi-Sanjiang | III-45 Tengchong region
III-46 Linchang region
III-47 Duchang potential belt
III-48 Bange-Jialing potential belt
III-49 Chuoqing-Nanmulin potential belt |
In South China uranium province of Marginal-Pacific domain

Distributions of volcanic/ granite-related U deposits in SE China

V: volcanic-related

G: granite-related

A: Marginal-Pacific metallogenic domain

D: Paleo-Asian metallogenic domain

C: Tethyan metallogenic domain

In South China uranium province of Marginal-Pacific domain
3. Tectonic Cycle to Uranium Mineralization

In regional:

Mesozoic – Cenozoic epoch is the most important mineralization age in China.

In space: 86% discovered ore deposits located in East China marginal-pacific domain.

In time: most of the ore deposits formed at the age of 180Ma to 80Ma (Yanshanian epoch)

“Large-scale metallogenesis age”

----- (Mao et al, 2005)
Granite-related and volcanic-related Uranium mineralization in China share the same characteristics in space & in time.

What is the relation of tectonic cycle in Mesozoic-Cenozoic to U mineralization?
3.1 Major tectonic-magmatic stages of Yanshanian epoch in SE China

In Ganhang belt:

Two tectonic-magmatic sub-cycles
Stage 1 and 2 of late Yanshanian epoch (145－100 Ma)
Stage 3 of late Yanshanian epoch (100－65 Ma)

In Taoshan-Zhuguang belt:

Four tectonic-magmatic sub-cycles
Stage 1 of early Yanshanian epoch (205－165 Ma)
Stage 2 of early Yanshanian epoch (165－145 Ma)
Stage 1 and 2 late of Yanshanian epoch (145－100 Ma)
Stage 3 of late Yanshanian epoch (100－65 Ma)
3.2 The relation of tectonic cycles to U mineralization in East China

<table>
<thead>
<tr>
<th>Tectonic Period</th>
<th>Age (Ma)</th>
<th>Major tectonic-magmatic activities</th>
<th>Geodynamic</th>
<th>Relation to U mineralization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late Yanshanian epoch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Stage 3 | 100-65 (K₂) | 1. depression basins (Erlian Basin)
2. basic and acidic dikes, calc alkaline series | NW-SE extension | 1. epithermal U mineralization
2. favorable braided river sedimentary system after the tectonic inversion |
| | | 1. Tectonic inversion
2. Unconformity between K₂ and K₁ | Near SN compression | Favorable near SN extension-ductile faults & fractures by NE left-lateral movement |
| | 125-110 (K₁) | 1. thick continental lithospheric thinning by extension in East China
2. fault subsidence basin, basin and range tectonics
3. bimodal volcanic rocks, shoshonite, I type and A type granites related to mantle-crust interaction | NW-SE extension | 1. hypothermal U mineralization related to porphyry?
2. favorable calc alkaline volcanic-subvolcanic host rocks for U mineralization |
| | 145-125 (K₁) | 1. large scale K-rich calc alkaline volcanic-subvolcanic rocks in East China
2. transition of compression tectonics to extension tectonic | Multi-direction convergent orogen of three tectonic domains | U-rich S type granites in South China as the favorable host rocks |
| **Early Yanshanian Epoch** | | | | |
| Stage 2 | 165-145 (J₃) | 1. multi-direction convergent orogen, crust lithospheric thickening
2. large scale S type granites
3. transition of near EW tectonics to NE tectonics
4. large scale thrust belts and foreland basins | Multi-direction convergent orogen of three tectonic domains | |
| | | 1. J₁-J₂ depression basin
2. J₁-J₂ A type granites and bimodal volcanic rocks in South China
3. tectonic inversion in J₂₂ depression basin | Near SN extension | basin tectonic inversion yielded the favorable sedimentary sequences, such as J₂₂ formation in Erdos basin |
| | | 1. large scale continental block collage, unified Europe – Asia plate
2. near EW orogen, folds in covering and the thrust tectonics
3. S type granites of Indo-Chinese epoch
4. foreland basins (Erdos basin, Sichuang basin) | Continental collision | U-rich S type granite of Indo-Chinese epoch in South China as the favorable host rocks |
| **Late Indo-Chinese Epoch** | | | | |
4. Hypothermal Uranium Mineralization

Two uranium metallogenic systems in SE China?

Epithermal metallogenic system

Epithermal mineralization

Hypothermal metallogenic system

Hypothermal mineralization
4.1 Characters of epithermal mineralization

Type of ores: vein type
Alteration: silicification, fluoritization
Uranium mineral: pichblende
Mineralization age: < 100Ma
Mineralization T: < 250°C
Gap (H/M): big
Mineralization mechanism: mixing of ancient meteoric water with underground circulation fluids

Gap: Time gap between host rock and mineralization
Example: Mianhuakeng Deposit in North Guangdong

Section of Mianhuakeng Deposit

* Endogranitic
* Structure – control
4.2 Granite-related hypothermal uranium mineralization

In contrast to the characteristics of typical granite-related epithermal uranium mineralization:

* middle to high temperature mineral assemblage and alterations
* disseminated/stockwork uranium ores in fissuration granite with extensive potassic alterations
* relatively older mineralization age with the superimposed reformation of late epithermal mineralization

Recognized by researchers:

Beresitization (pyritized phyllite) type

--- by Prof. Du in 2006, 2009
Example 1: Zhushanxia deposit in Xiazhuang U ore field

1, middle grain -porphyritic biotite granite;
2, fine grain muscovite granite;
3, potassic alteration granite
4, diabase
5, altered fissuration zone
6, silicification zone
7, ore body
Example 1: Zhushanxia deposit in Xiazhuang U ore field

* extensive potassic alteration with biotitization in ductile zone
* uraninite + scheelite, with tourmaline (U: 0.24-0.56%, W: 0.3%)
* age of uraninite: 146〜165.5Ma (Hu et al, 2003)

Thin section of ore photo: (-) x25
Lin et al. 2014

Example 2: Shituling deposit in Xiazhuang U ore field

1, middle grain -porphyritic biotite granite;
2, fine grain two-mica granite;
3, diabase
4, ductile fracture zone
5, fractured silicification zone
6, ore body
7, tunnel
8, drilling hole
Example 2: Shituling Deposit in Xiazhuang U ore field

Micro-vein/disseminated Ore
(Du et al., 2006)

Age of host granite: 238 ± 2.3 Ma
Age of U mineralization:
130—138Ma
Mineralization temperature:
290-338°C

* extensive potassic aleration, chloritization and sericitization in fissuration granite

* uraninite, coffinite and pichblende in black chlorite and sericite micro-veins
mu: hydromuscovite of biotite
cal: calcite, ru: rutile
hem: hematite
uth: uranothorite (accessory mineral)
q: quartz, cof: coffinite
per: perthitic microcline porphyroclast

Original host rock:
biotite porphyritic monzogranite

(Du et al. 2006)
Example 3: Lanhe deposit in North Guangdong

* Endogranitic
* Structure – control
Potassic alteration granite host rock

Pichblend micro-vein and Stockwork in fracture zone
4.3 General characteristics of hypothermal U mineralization

Type of ore: disseminated/stockwork in fissuration rocks
Alterations: alkaline metasomatism (potassic alteration), beresitization
Uranium minerals: uraninite, coffinite
Mineralization age: \(>\ 100\text{Ma}\)
Mineralization T: \(>\ 250\ \text{°C}\)
Gap(H/M): small, might related to small porphyry?
Mineralization mechanism:
boiling/mixing of fluids with ore forming solution derived from deep.
5. Discussion

More and more evidence indicates that there are multi-stages uranium mineralization in many granite-related uranium deposits in south China.

The early stage mineralization shares the characters of hypothermal U mineralization and had close relations to alkaline alterations.
* Evidence indicates the mixing of ore forming solution derived from deep (upper mantle?).

* Mineralization mechanism dominated by boiling and mixing of ore forming solution.

* Uranium mineralization priority occurred in the areas with lithospheric extension in crust thickening geological setting.
5. Discussion

- Contract term to “epithermal U mineralization”, it’s not the typical intrusive high temperature mineralization.

 * Detail studies needed, such as the mineralization ages, alterations and fluid inclusion for hypothermal mineralization.

 * Relation of hypothermal mineralization to late epithermal uranium mineralization?

 * New target for future exploration?
Thank you!