DE LA RECHERCHE À L'INDUSTRIE

Cez

www.cea.fr

Development of a New Process for the Selective Extraction of Uranium from Phosphate Rocks

URAM | $23 \rightarrow 27$ June 2014

G. Bernier, M. Miguirditchian, V. Pacary, C. Balaguer, M. Bertrand, B. Camès, X. Hérès

(Radiochemistry & Processes Department / CEA Marcoule, France)

H. Mokhtari

(AREVA Mines/SEPA)

Summary

Introduction and context

Chemistry of Uranium in phosphoric acid Limits and optimization of the Oak Ridge process (reference)

Development of a new process

Laboratory Parametric Studies Modelling of the extraction with DEHCNPB Flowsheet design Counter-current test in PROUST platform

Conclusions

Introduction and Context

Uranium concentration in phosphoric acid ores: production and resources

Country	Estimated production in 2010 (Mt P ₂ O ₅)	Total reserves (Mt P ₂ O ₅)	
Algeria	2.0	2200	A millions (suc of
Australia	2.8	82	4 millions tons of
Brazil	5.5	340	
China	65	3700	« recoverable »
Egypt	5	100	uranium
Israël	3	180	But low U concentration
Jordania	6	1500	(mainly 60 to 200 ppm)
Morocco	26	50000	Production of U as a by-product
Russia	10	1300	of phosphoric acid production
South Africa	2.3	1500	
Syria	2.8	1800	limited at 10 ktll/wear (200)
Tunisia	7.6	100	infined at TO KLO/ year (20%)
USA	26.1	1400	Current world demand)
Other countries	11.7	865	F Fizaine T Flouet Resources Policy 38
Total	176	65000	(2013) 458-469)

Source AIEA Safety Reports Series N78

Chemistry of Uranium in phosphoric acid

U considered as impurity vs other cations as Ca, Mg, Fe, Al

Elément	Concentration (g/L)	Elément	Concentration (g/L)
Са	3.3	AI	1.8
Mg	2.8	Na	0,4
Fe	2.2	U	0.14

Strongly complexed in H_3PO_4 (26-32% P_2O_5 (4-5.5 M H_3PO_4)

Uranium recovery from phosphoric acid by solvent extraction

IAEA Safety Reports Series N°78

Limits of reference process

Separation of U from industrial phosphric acid by synergistic mixture of organic solvent

- AREVA Mines asks CEA to improve the reference process
 - D_U not high enough to allow only one Separation/Purification cycle
 - D_{Fe} too high which involves insoluble cruds during U step

Screening of alternative extractants

- Mono and diamides tested but were not efficient enough because of strong complexation of UO₂²⁺ by phosphates
- Optimisation of the molecules of the reference system (but if $D_U \underbrace{\bullet}_U$ then $SF_{U/Fe} \underbrace{\bullet}_U$)

New concept of molecules

Concept of bifunctional molecules developed by CEA and ICSM : amido-phosphonates for AREVA

Amido-phosphonates

Patented molecule PCT WO 2013/167516 A1 6/5/2013 (national) and 14/11/2013 (international)

- Combination of cationic exchanger and neutral donor functions on a single ligand
- Modification of extraction mechanisms (increase of D_U and U/Fe selectivity)

Optimization of the design of amidophosphonates

- Study of molecular design and influence of chemical properties
 - Length and ramifications of alkyl chains on amid group (R¹ and R²)
 - spacer length and degree of steric hindrance on the spacer (m, R³ and R⁵)
 - length of alkyl chain of free phosphonic acid functions (R⁴)

Laboratory Parametric Studies

Preparation of synthetic solutions

- Organic solutions by dilution of extractant in aliphatic diluent (without addition of modifier)
- Aqueous solutions of phosphoric acid by mixing concentrated solutions of H₃PO₄, U and Fe as phosphates (Fe spiked with ⁵⁹Fe for improving detection limits with gamma spectrometry)
- Distribution ratios measurements by batch experiments
 - Solutions vigourously shaken (O/A=1) to obtain good emulsion (30 min)
 - Concentrations of U and Fe measured by ICP-AES before and after contact
 - Organic concentrations estimated after 2 successive stripping first to strip Fe and second to strip U
 - Fe distributions measured also by gamma spectrometry ⁵⁹Fe
 - Screening tests with various designs of molecules and evaluation of performances : D_U, D_{Fe}, FS_{U/Fe}, solubility in aliphatic ligand, decantation
 - Choose of **DEHCNPB** as optimised amido-phosphonate

First screening tests

- Comparison of extraction performances between the synergistic reference system (HDEHP/TOPO) and DEHCNPB
 - Experimental conditions
 - Synthetic aqueous solution 250 mg/L U(VI) + 2,5 g/L Fe(III) + 5 M H_3PO_4
 - 1 hour of shaking contact at 22-23℃ and O/A=1
 - D_U and SF_{U/Fe} much higher with DEHCNPB and for lower concentrations

		[U] initial (mg/L)	[Fe] initial (mg/L)	D _U	D _{Fe}	SF _{U/Fe}	D _U x 39 SF _{U/Fe} x 37,5
	HDEHP/TOPO (4/1) 0.25 M	250	2500	3.8	0.02	200	
	DEHCNPB 0.1 M	290	3100	72	0.01	6500	
D _U x 19 SF _{U/Fe} x 32,5	DEHCNPB 0.25 M	3920	5240	150	0.02	7500	
		EHCNF	PB very	promi	sing m	olecule	

Batch Equilibrium Studies

Influence of DEHCNPB concentration on uranium extraction

- D_U at 5 M H₃PO₄ and [DEHCNPB] varying from 0.01 to 0.1 M

Slope close to 2 confirms that UO₂²⁺ is extracted by 2 molecules of DEHCNPB with the release of 2 protons in aqueous phase

 $UO_2^{2+} + 2 L-H \iff UO_2L_2 + 2 H^+$

Batch Equilibrium Studies

Influence of DEHCNPB concentration on iron (III) extraction

- D_{Fe} at 5 M H₃PO₄ and [DEHCNPB] varying from 0.01 to 0.1 M

Slope close to 1.6 shows that Fe³⁺ ion would be extracted by 1 or 2 molecules of DEHCNPB

 $Fe^{3+} + 1,5(\overline{HY})_2 \Leftrightarrow \overline{FeY_3} + 3H^+$

suggested equilibrium

Batch Equilibrium Studies

Influence of uranium loading

- Solvent with 0.1 M DEHCNPB/dodecane contacted with increasing concentrations of U at 5 M H₃PO₄
 - Loading capacity close to 5 g/L of U in organic phase without third phase formation
 - 4 or 5 molecules of DEHCNPB coordinate U (DEHCNPB probably organized as dimers)

Test with a genuine industrial phosphoric acid solution

Composition of an industrial phosphoric acid solution

Elements	U	Fe	Мо	Cr	Zn	Cd	AI	V	Ti	Zr
Conc. (mg/L)	155	2470	6	276	393	19	1880	264	55	44
D _M	>100	0.02	0.15	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

- Results very close to those obtained with synthetic solutions
 - great selectivity of DEHCNPB for U
 - only Mo is slightly extracted (DMo = 0.15) but $SF_{U/Mo}$ remains high (> 600) and Mo present as traces in phosphoric solutions

Modelling of the extraction with DEHCNPB

- Extraction mechanisms suggested by laboratory parametric studies
- Goal of modelling
 - optimize thermodynamics constants of the different extraction equilibrium for each step of the flowsheet
- Cationic exchange between U and DEHCNPB (HY) considered in proton dimer form
- Global forms of equilibriums of U and Fe, with associated thermodynamic constants are given below

$$UO_{2}^{2+} + 2(\overline{HY})_{2} \Leftrightarrow \overline{UO_{2}Y_{2}(HY)_{2}} + 2H^{+} \qquad K_{exU,2} = \frac{\left[UO_{2}Y_{2}(HY)_{2}\right]\left[H^{+}\right]^{2}}{\left[\overline{(HY)_{2}}\right]^{2}\left[UO_{2}^{2+}\right]}$$
$$Fe^{3+} + 1,5(\overline{HY})_{2} \Leftrightarrow \overline{FeY_{3}} + 3H^{+} \qquad K_{exFe,1,5} = \frac{\left[\overline{FeY_{3}}\right]a\left(H^{+}\right)^{3}}{\left[\overline{(HY)_{2}}\right]^{1,5}a\left(Fe^{3+}\right)}$$

Optimization of constants

- Application of the mass action law for each element
- Minimizing the differences between experimental and calculated organic data
- Resolution of mass balances according to Scilab calculation software to determine the free concentrations
 CEA | URAM 2014 | PAGE 13

Modelling of the extraction with DEHCNPB

Comparison of experimental and calculated data for the isotherm of uranium extraction

Experimental and calculated U extraction isotherm with 0.1 M DEHCNPB/TPH and 5 M H_3PO_4 at 25°C

- Similar modelling were performed for iron scrubbing and U stripping
- Study of the influence of temperature on U and Fe extraction
- Extraction of phosphoric acid by DEHCNPB neglected after titration experiments
 CEA | URAM 2014 | PAGE 14

DE LA RECHERCHE À L'INDUSTRIE

Flowsheet design

- Model implemented into PAREX simulation code to elaborate a flowsheet at laboratory scale
- Design of a flowsheet with 3 main steps
 - Uranium extraction by DEHCNPB
 - Iron scrubbing by H_2SO_4
 - Uranium stripping by carbonate (Na₂CO₃)

Process devices and analytical measurements

- **—** 3 PMMA Laboratory scale mixer settlers with perforated stainless steel blades
- Extraction step heated at 35°C
- Iron scrubbing and Uranium stripping steps heated at 45°C
- Flow rates controlled by weight measurements

CEA | URAM 2014 | PAGE 16

Experimental results of flowsheet tested

- On line analysis shows that steady state was reached for U
- Very successful test : more than 91% of U recovered and concentrated from 0.12 to 5.6 g/L
- Good decontamination of U from Fe and other impurities
 - **Fe/U** = 0.04% < ASTM specifications (0.15%)
- No cruds observed in stripping section and good hydrodynamic behaviour
- Comparison of experimental and calculated profiles with the PAREX code shows good agreement which validate the extraction model developed

Experimental and calculated uranium aqueous (left) and organic (right) profiles after the countercurrent test with an industrial phosphoric acid CEA | URAM 2014 | PAGE 17

Conclusions

- Amido-phosphonate DEHCNPB is very promising for U extraction from phosphoric acid
 - Selective extraction of U even among high concentrations of iron in genuine 5 M H₃PO₄ solution : [Fe]/[U] reduced from 30 (feed) to 4.3 10⁻⁴ (product)

Parametric laboratory studies

- Characterize the stoichiometry of extracted complex in organic phase
- Propose extraction mechanisms
- Model developed and implemented in CEA PAREX code
 - Modelling and flowsheet design
- Counter-current test on PROUST platform in G1 facility with genuine industrial phosphoric solution
 - **—** Treatment of an industrial phosphoric acid in laboratory-scale mixer-settlers
 - Very promising performances of the run with good U recovery (91%) and good decontamination ([Fe] / [U] < ASTM specifications)</p>

Experimental and calculated profiles of U and Fe in good agreement Experiments in progress to optimize this flowsheet

Thank you for your attention

Acknowledgements AREVA Mines (H. Toubon, J. Thiry, P. Nardoux) for financial and scientific contribution ICSM (S. Pellet-Rostaing, R. Turgis, A. Leydier, G. Arrachart) for scientific contribution

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Marcoule | BP17171 | 30207 Bagnols-sur-Cèze Cedex T. +33 (0)4 66 79 66 48 | F. +33 (0)4 66 79 60 27

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

Direction de l'énergie nucléaire Département de radiochimie des procédés Service de chimie des procédés de séparation Laboratoire de physico-chimie des procédés