

International Symposium on 23–27 June 2014. Vienna, Austria

Uranium Raw Material for the Nuclear Fuel Cycle:

Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues

FORECASTING SANDSTONE URANIUM DEPOSITS IN OIL-AND-GAS BEARING BASIN

Igor Pechenkin

All-Russian Scientific-Research Institute of Mineral Resources Moscow, Russia

Metallogenic division of the Neartienshan uranium ore megaprovince

1, Exposures of crystalline basement rocks.

Boundaries of: 2, Neartienshan megaprovince; 3, Ore provinces.

Uranium ore provinces: A, Chu-Sarysu; B, Syr Darya; C, Central Kyzylkum; D, Fergana uranium ore region.

Synthesis of science and practice

Geology team #25 in Uchkuduk (06.04.1956) Left to right: V.Mazin, P.Boukreev, V.Makarov, A.Pak, A.Tsygankov, G.Pechenkin, V.Kondrashkin

Scientists of VIMS
E.Shmariovich (left), M.Kashirtseva,
E.Golovin (Tashkent, 1962)

Geochemist – A.Perelman (IGEM RAS, 1960)

Typical hydrochemical section (Uchkuduk) (After K.Kernosova, 1958& A.Glazov, 1959)

Analysis of ore-bearing basins shows that uranium deposits are concentrated within two tectonic belts: Collisional and Suborogenic.

Within the intermountain areas of the Collisional (orogen) belt there are uranium deposits of the sandstone type in the terrigenous sediments with oil and gas reduction.

Sequence of epigenetic changes (by V.Kholodov) (by E.Shmariovich)

V. Kholodov (1950)

The Fergana basin

Deposits: 1 - uranium, 2 - copper, 3 - sulfur, 4 hydrocarbons; 5 - reduction zone, 6 - boundary of oxidized zone

© Igor Pechenkin

The Sabyrsay deposit

The sequence of epigenetic changes in the marginal part of oil-and-gas basin

New epigenetic formation of reduction series

1 - Paleozoic basement; 2 - gas fields; 3 - oil fields; 4 - carbonate "pipe"; 5 - light scattered bitumen; 6 - viscous and solid bitumen; 7 - surface of the pre-Mesozoic basement (in km); 8 - faults; 9 - priority area propagation of gas deposits; 10 - distribution area equal deposits of oil and gas; 11 - area of the predominantly viscous and solid bitumen; 12 - area of the predominantly light scattered bitumen

V. Schetochkin Scientist of VIMS

Scientists of VSEGEI

G.Grushevoi

Examples of relationships between oxidizing and reducing processes

1 – clay, 2 – sand, sandstone, 3 – basement rocks, 4 – oxidation, 5 – reduction, 6 – "young" oxidation, 7 –boundary of oxidation zone, 8 – faults, 9 – mineralization: a - industrial, b - non industrial, 10 – direction of movement of fluids: a - reduction, b - oxidation

Objects over collapsing oil-and-gas deposits

The Tajik depression

The Komsomolskoe deposit (section)

(After I.Kondratieva et al., 1960)

1 – red rock, 2 – partial reduction, 3 – total reduction, 4 – gray rock, 5 – oil, 6 – fault, 7 – borehole: a - on plan, b - on section

South Texas **Uranium Region** 100 km o - uranium deposits

The Texas Coastal Plain

GEOCHEMICAL CHANGES IN THE AQUIFER HORIZON

STAGE						
Pre-ore			Ore		Post ore	
Primary red rock	Reducing -1		Oxidizing		Reducing - 2	

Examples of epigenetic changes

An Example of a reduction-oxidation sequence

Epigenetic changes in the Dunshen deposit

Primary rock

<u>Gray sandstones</u> (biotite and pyrite in sandstone with kaolinite-montmorillonite cement)

Modified rock

Gray-greenish sandstones (kaolinite-montmorillonite cement replacement of colloform chlorite)

The Ordos basin

1 – fault 2 – alleged fault, 3 – thrust, 4 – direction of tectonic stress, 5 – mountain framing basin, 6 – Ordos basin, 7 – graben, 8 – boundary of oxidation zone 9 – motion direction of oxidize water, 10 – area of formation of oil and gas, 11 – motion direction of reducing agent, 12 – region of fluid relieving, 13 – area development reduced rocks

15

Sequence of formation of the Dunshen deposit

Stage I

Pre-concentration (groundwater oxidation zone)

Stage III

Ore preservation brought about by reducing fluids

Stage II

Interlayer water infiltration with uranium ore

Stage IV

Groundwater oxidation without ore

1 – faults: a - main, b - alleged, 2 – primarily gray rocks, 3 – wrench fault, 4 – direction of tectonic stress, 5 – interlayer oxidation zone, 6 – groundwater oxidation zone, 7 – area development reduced rocks, 8 – uranium ore. Direction of movement: 9 – oxidized water, 10 – reducing agent in Mz rocks, 11 – reducing agent in Pz rocks, 12 – region of fluid relieving, 13 – area of development of reduced rocks

Conclusion

- Uranium and oil deposits in sedimentary basins have complex relationships.
- The interrelation of epigenetic processes determines the distinctive characteristics of ore genesis in different parts of oil and gas basins.
- Their detection by mapping creates the necessary conditions for determining the prospects for both local regions of subsoil assets and large geological structures.
- Mineragenic analysis of sedimentary basins should be based on simulations with the inclusion of space and time characteristics.
- These methods made it possible to carry out metallogenic zoning of the Asian territory in terms of uranium and at the same time to estimate the role of hydrocarbons.

Thank you for your attention!

pechenkin@vims-geo.ru