Metallurgical Testwork to Support Development of the Kintyre Project

Mark Maley¹, Marina Fainerman-Melnikova¹, Mervin Ovinis¹, Karin Soldenhoff¹, Bob Ring¹, Eric Paulsen² & David Maxton²

26 June 2014

ANSTO Minerals¹, Cameco²

ANSTO Minerals

- Studied processing of uranium ores for over 30 years;
- Extensive variety of deposits:
 - 6 operating mines in Australia (3 open, 3 closed)
 - 15 potential mines in Australia
 - 14 operating and potential mines outside Australia (mainly Southern Africa)
- Fundamental and diagnostic leach studies
- Detailed geometallurgical studies

KINTYRE URANIUM DEPOSIT

- Discovered in 1985 by CRA (Rio Tinto)
- Acquired in 2008 by Cameco/Mitsubishi JV (70/30)

KINTYRE URANIUM DEPOSIT

- 55 Mlb U_3O_8 @ 0.58% average grade
- Uranium present mainly as:
 - Uraninite (UO₂)
 - Coffinite $((USiO_4)_{1-x}(OH)_{4x})$ lesser amounts
- High in carbonates
 - Ankerite (Ca(Fe,Mg,Mn)(CO₃)₂)
 - Dolomite $(CaMg(CO_3)_2)$

Metallurgical Testwork

History

- Acid Leach Pilot Plant operated at ANSTO in 1997
 - Ore upgraded to 2% $\rm U_3O_8$ by radiometric sorting and gravity separation
 - 7 campaigns
 - Direct uranium precipitation yielded on-spec product
- Alkaline Leaching subsequently investigated by Cameco, but acid route selected

Metallurgical Testwork

Objectives of Work Discussed Today

- Optimisation of leach conditions
 - Maximise U extraction
 - Minimise acid and oxidant consumption
- Evaluate leaching of variability samples
- Effect of ore type and leach conditions on settling, filtration and rheology
- Neutralisation and radionuclide deportment in tailings
- Solvent Extraction Pilot Plant
 - Evaluation of ammonia and strong acid stripping

Leach Testwork

Automated – Computer controlled pH and ORP

Leach Optimisation Program

Composite sample prepared to represent average of U and CO₃ in orebody

Species	wt%	Species	wt%
CO ₃	9.55	Mg	7.3
Са	3.03	Si	25.6
Fe	8.2	U ₃ O ₈	0.52

- Leach Testwork:
 - 50 wt% solids
 - 18 h leach time
 - NaMnO₄ as oxidant
- Variables investigated:
 - Temperature 35-65°C
 - pH 1.8-2.5
 - ORP 450-550 mV (vs. Ag/AgCl)
 - P₈₀ 250-710 μm

- U leached at varying rates, but final extractions similar
- 55°C selected as optimum temperature

Effect of pH

- Final U extractions similar at all pHs except 2.5
- pH 2.2 selected as optimum

Effect of ORP

- 450 mV selected as optimum ORP
- U present mainly as Uraninite leaching not driven by ORP as long as Fe³⁺ concentration is sufficiently high

Variability Samples Leaching

- Performed under optimum conditions determined:
 - pH 2.2
 - ORP 450 mV
 - $-P_{80} 500 \, \mu m$
 - 50 wt% Solids
 - 18 h Leach Time

	% U Extn.	Acid Addn. (kg/t)	Equiv. MnO2 Addn. (kg/t)
Max	99.2	432	22.3
Min	86.2	42	2.8
Avg.	95.5	187	11.1

Variability Samples Leach Results

Other Work from Leaches

- QEMScan on leach feeds and residues
- Effect of ore type and particle size on settling and filtration rate
- Effect of solids density on rheology for feed and residue slurries and neutralised slurries
- Tailings Neutralisation and radionuclide deportment

Bulk Leaching

• 2000 kg of ore leached over three campaigns

Solvent Extraction Testwork Objectives

To carry out equilibrium batch testwork and to operate solvent extraction mini-pilot plant:

- To compare the performance of the ammonia and acid options for uranium stripping;
- To further define the solvent extraction process unit operation for the Kintyre Uranium Project to obtain engineering design data for a DFS.
- Confirm/optimise operating conditions;
- Identify potential operational issues;
- To trace the deportment of impurities.

Uranium Solvent Extraction – General Process

Mini-Plant Continuous Operation

- Two separate continuous solvent extraction mini plant trials operated for a total of 6 days;
- Total of ~1000 L of PLS was treated
- Alamine 336 (5 vol. %) + 2.5% iso-decanol in Shellsol 2046
- Stripping methods:
 - ✓ Ammonia stripping process $(NH_4OH/(NH_4)_2SO_4)$,
 - ✓ Acid stripping process (H_2SO_4)

SX Mini-Plant Setup

Uranium Solvent Extraction - Ammonia Strip Process

Uranium Solvent Extraction - Acid Strip Process

Feed Liquor

	g/L	Elements	g/L	Elements	g/L
U	2.7	As	0.002	AI	1.6
S	53	Мо	<0.001	Са	0.57
		Si	0.3	Cu	0.02
рН	1.8	Zr	0.01	Mg	25
ORP (mV)	420	V	<0.001	Mn	16
				Na	1
		Fe	1.5	Ni	0.02
				Zn	0.03

Extraction

Operating Conditions:

- pH 1.9-2.1 in E1 (loaded organic)
- 1.6-1.8 in E4 (raffinate)
- Temperature = 35-45°C
- O/A = 0.65

Performance:

- U extraction = 99.7-99.96 %
- [U]_{raffinate} = 1-9 mg/L
- [U]_{loaded solvent} = 4.2-4.3 g/L

Phase Disengagement – Extraction

Organic Continuous

Aqueous Continuous

Scrub

Operating Conditions:

	рН		
Stago	Sc1	Sc3	
Stage	(spent scrub)	(scrubbed organic)	
Ammonia strip process	1.5	2.5	
Acid strip process	1.7	1.6	
Temperature 30-40°C		O/A ~10	

Performance:

- \geq 50 % of entrained Mg and Mn removal;
- Negligible scrubbing of As, Ca, Cu, Si and Zr;
- U scrubbing = 0.1-0.3 %

Operating Conditions

Ammonia Strip:

- [(NH₄)₂SO₄] = 1.5 M
- pH gradient:

pH 3 in St1 (product stream) pH 5 in St5 (stripped organic)

- **Strong Acid Strip:**
- H₂SO₄ Concentration:

390 g/L in St1 (product stream)

400 g/L in St5 (stripped organic).

- Temperature = 30-40°C
- O/A = 5

- Temperature = 30-40°C
- O/A = 10

Mini-Plant Performance - Comparison

Ammonia Strip:

	[M] _{product stream}	[M] _{stripped solvent}	Strip
Element	g/L	mg/L	%
U	18	30	99.3
S	54	-	

Strong Acid Strip:

	[M] _{product stream}	[M] _{stripped solvent}	Strip
Element	g/L	mg/L	%
U	41	15	99.6-99.8
S	126	3,700	

Mini-Plant Performance - Comparison

	U Normalised Recovery (%)			
	To Raffinate	To Spent Scrub		
Ammonia Strip	0.3	0.1	99.6	
Strong Acid Strip	0.04-0.35	0.1-0.3		99.6-99.8

Impurities in the Product Stream

	Ammonia strip	Acid strip	Max. U Concentrate Limit**
		% of U	
As	0.03	0.02	0.10
Са	0.16	0.29	1.0
Fe	0.04	0.01	1.0
Mg	0.07	< 0.002	0.50
Мо	< 0.03	< 0.01	0.30
Si	< 0.03	< 0.01	
V	< 0.03	< 0.01	0.30
Zr	0.06	0.15*	0.10

* Zr rejected by H_2O_2 precipitation

** Without rejection (ASTM C967-13 Standard Specification for Uranium Ore Concentrate)

Acid vs. Ammonia Stripping Methods

- Both methods are equally effective, achieving > 99 % stripping of U;
- The acid circuit is easier to control;
- Higher U concentration in the loaded acid strip solution;
- Acid route more options for uranium final product;
- Environmental issues associated with ammonia;
- Use of corrosive reagent.

Conclusions

- Acid leaching has been identified as a robust process for Kintyre ores
- Testwork showed that optimum leach conditions for Kintyre are:
 - pH 2.2
 - ORP 450 mV
 - $-P_{80} \, 500 \, \mu m$
 - 18 h Residence time
- Average Uranium Extraction of 95.5% for Variability ₃₁ Samples

Conclusions

- Two fully integrated U SX mini-pilot plants were successfully operated for 6 days testing ammonium strip and acid strip processes;
- High U recoveries from feed to product stream were achieved:
 - [U]raffinate < 10 mg/L;
 - acid strip process: 99.8 %;
 - o ammonia strip process: 99.6 %.
- Comparable stripping efficiency:
 - ammonia strip process: 99.3 %;
 - acid strip process: 99.6-99.8 %.
- Potential operational issue with ammonia strip stable emulsion formation (extraction) and crud.

