Development of the Falea Polymetallic Uranium Project, Mali

Bob Ring, Paul Freeman – ANSTO Minerals

- Deposit Size & Mineral Resources
- Recent Process Development Activities
- Mineralogy of Deposit
- Flowsheet Options
- Flowsheet Performance Comparison
- Preferred Flowsheet Refinement
- On-going Work

Falea Project Basics

- Project now owned by Denison Mines
- ANSTO Minerals working with owner and their consultant, DRA
- Located in south western Mali, West Africa, near the intersection of the Senegal and Guinea borders
- Established mining region (mainly gold)
- Location on plateau favourable for underground operation
- Significant uranium, silver and copper mineralisation – different to other U deposits
- Excellent metallurgical outcomes to date

Deposit Dimensions & Mineral Resources

2.0

2.0

1.0

4.0

1.0

1.0

including

including

DF-199

including

including

1.22

1.80

3.05

0.39

0.12

1.40

127.00

141.50

201.00

16.70

6.07

37.90

* Diagrams from Denison Mines website, Mineral Resources from Minxcon, Nov 2012

	Cut-off	Tonnes	U ₃ O ₈ (%)	U ₃ O ₈ (lbs)	Silver (Oz)	Copper (lbs)
M & I	0.03%	15,670,000	0.09	29,581,000	27,940,000	74,220,000
Inferred	0.03%	15,350,000	0.05	15,688,000	8,910,000	81,190,000
Total				45,269,000	36,850,000	155,410,000

> Only 5% explored, all zones remain open

Recent Process Development Activities 1

- 2010 Preliminary metallurgical testwork at SGS Lakefield in Johannesburg
 - Very good uranium recoveries possible
 - Flotation is feasible to separate out copper/silver as sulphides
- March 2011 ANSTO Minerals (Phase 1)
 - Acid and carbonate leaching
 - Solid/liquid separation
 - Flotation of ore and acid leach residue
 - Potential process flowsheets identified
- November 2011 (Phase 2)
 - Comprehensive program to generate data for economic assessment of alternative flowsheets
 - DRA selection of preferred process route

Recent Process Development Activities 2

- March 2013 Phase 2 Extension (refine preferred option)
 - Milling and flotation piloting program
 - Concentrate leach optimisation
 - Options for silver recovery
 - Radionuclide deportment through the process flowsheet
- February 2014 Phase 3 (further refinement)
 - IX recovery of uranium
 - Production of uranium oxide concentrate
 - Copper recovery
 - Radiometric sorting
 - Environmental testwork on tailings

Mineralogy

- Dominant uranium-bearing mineral is uraninite
 - Typically observed in association with quartz, chlorite or muscovite
- Coffinite also present, often in association with uraninite, quartz and muscovite, chlorite, and sulphides
- > Brannerite present and typically associated with muscovite
- > Copper is present as sulphide minerals, mainly chalcopyrite
- Silver present mainly as argentite (Ag₂S), but also as tennantite (Cu,Ag,Zn,Fe)₁₂As₄S₁₃ and in native form
- Gangue consists mainly of quartz, muscovite, chlorites, carbonates, and feldspars

Mineralogy - **Distribution**

Mineralogy (XRD) on "Typical" Ore and Acid Leach Residue

Mineral	Chemical formula	Ore	Leach Residue	Level of Attack
Quartz	SiO2	70	76	Very Low
Muscovite	KAI2Si3AIO10(OH)2	11.9	13.6	Low
Clinochlore	(Mg,Fe)6(Si,Al)4O10(OH)8	6.6	5.7	Medium
Dolomite	CaMg(CO3)2	3.3	nd	Complete
Calcite	CaCO3	1.8	nd	Complete
Albite	NaAlSi3O8	2.2	0.6	High
Riebeckite	(Na,Ca)2(Fe,Mg,Al)5(Si,Al)8O22(OH)2	0.8	0.4	
CaSO4.xH2O	CaSO4	0.8	2.1	Formed from calcite and dolomite
Apatite	Ca5(PO4)3(F,OH,Cl)	0.7	0.3	
Hematite	Fe2O3	0.6	0.4	
Pyrite	FeS2	0.6	0.4	
Chalcopyrite	CuFeS2	0.6	0.3	
Rutile	TiO2	0.5	0.2	
Microcline	KAISi3O8	0.3	0	

- Confirms that main acid consuming minerals are carbonates (calcite and dolomite), chlorite, feldspars (albite, microline), also apatite and chalcopyrite
- Carbonate leach data confirms that sulphides are the main consumers of carbonate

Uranium/Ag Minerals in the Ore

Uraninite and chamosite inclusions within a quartz particle.

Uraninite/pitchblende inclusions within a chalcopyrite particle enclosed by quartz.

Coffinite (bright white) aggregates interstitial to calcite and quartz. Argentite partially rims two of the coffinite aggregates.

- Uranium is mostly present as easily leachable uraninite
- > Argentite is found associated with uraninite and coffinite
- > Adequate uranium liberation is achieved by grinding to a P_{80} of 75 μ m

Mineralogy of Acid Leach Residue

Intergrown brannerite and uraniferous rutile at the edge of a particle of quartz. A small liberated particle composed of brannerite and uraniferous rutile.

Argentite in association with pyrite.

- Brannerite and uraniferous rutile were the major uranium-bearing phases observed in leach residue
- > The silver-rich phase, argentite (Ag₂S) was present

Flotation Concentrate

Practically all unlocked sulphides report to concentrate

Flowsheet Options

- Polymetallic nature of the Falea deposit a range of flowsheet options
- Considerations carbonates in acid leaching; sulphides in alkaline leaching; need to recover Ag and Cu
- > Two primary flowsheet options assessed:
 - 1) Acid uranium leach of ore / flotation of leach residue to recover sulphide concentrate, treat for Cu and Ag
 - 2) Flotation of ore / alkaline uranium leaching of float tails / float concentrate treated for Cu and Ag recovery
- Various sub-options considered for each flowsheet

Flowsheet Option A – Leach / Flotation

- Uranium extracted by acid leach on ore, recovered from solution by conventional processing (high Cu extraction)
- Potential carbonate pre-float to reduce acid consumption (U loss too high)
- Cu leached may be recovered by SX. Alternatively, sulphide addition to leach may suppress copper leaching
- Flotation of neutralised acid leach slurry, float concentrate is leached to recover silver

Flowsheet Option B – Flotation Up Front

- Flowsheet designed to give higher product yield and reduced reagent demand
 - Sulphides report to concentrate, reducing carbonate consumption in alkaline uranium leach on tails
 - Carbonates report to float tails reducing acid consumption in Cu/U leaching
- Uranium extracted by conventional carbonate leaching
- Cu / Ag separation achieved by oxidative acid leaching

Uranium associated with sulphide minerals recovered and recycled to the carbonate leach circuit

Flowsheet Performance Comparison

- High recoveries of copper and silver to concentrate for both flotation of ore and leach residue
- Uranium extraction is >90% in both flowsheets
- Copper extraction is less for the Ore Leach/ float flowsheet
- For both flowsheets silver recoveries similar
 scope for improvement
- Flotation and alkaline/acid leach of tails/concentrate (B) (aka Beaverlodge) selected as preferred process after trade-off studies by DRA

Preferred Flowsheet (B) Refinement

- Engineering studies by DRA identified options and areas for investigation, refinement :
 - Production of saleable Ag/Cu float concentrate
 - Processes for improved Ag (and Cu) recovery from float concentrate
 - Assess options for Cu recovery
 - Use IX for U recovery, rather than direct precipitation
 - Options for silver metal production
 - Tracking of radionuclide deportment by-product processes
 - Application of radiometric sorting
- Piloting of Milling and Flotation completed

Concentrate Treatment

- Ag significant value as by-product options for recovery:
- Option A
 - After U leaching sell Ag/Cu concentrate Radionuclides too high
 - Leach RNs from concentrate moderate success, low residual RNs
 - RNs possible marketing impact
- Option B
 - Oxidative acid leach dissolve U and Cu oxidise AgS leach in CN
 - Ag jarosite formation/not soluble in CN
 - Alternative POX leach, roast leach, lime boil (ineffective /costly)
 - Optimised atmos. oxidative leach selected > 85% Ag recovery

U/Ag/Cu Recovery

- Cu successfully recovered by Fe cementation SX an option
- U precip with MgO, successfully recovered in primary alkaline leach
- > Ag recovery by Zn cementation or C adsorption demonstrated
- U recovered by IX/bicarbonate elution SDU precip/redissolve/UO₄ precip
 - On-spec UO₄.2H₂O produced

On-going work

- Production of final Ag product
- Variability study test selected process on range of ore types

Other Enhancements

End Slide

