
Solvent Extraction Of Uranium Towards Good Practice In Design, Operation And Management.

International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle Vienna, June 2014

Good Practice in Uranium Solvent Extraction

- Historical Origins
- Foundation Chemistry
 - Extractants
- SX Feed Control
- Process Stages
 - Extraction Stage
 - Downstream Stages
- Exchange Equipment
- Solvent Condition
 - Phase Disengagement
 - Crud Formation and Handling
- Towards the Future

- •Originated from nuclear industry uranium concentrates
 - Based on TBP extractant from nitric acid solutions
 - Extractant screening by Oak Ridge National laboratories
- Pilot investigations with acid leach slurries
- Development through commercial application
 - Organic phosphoric acids; Dapex e.g. Shiprock
 - Secondary amine; e.g. Mexican Hat
 - Tertiary amine; Amex, e.g. Grants
- Equipment design evolved with each installation

Grinstead et. al. Peaceful Uses of Atomic Energy 1955

The Design and Performance of Pump-Mix and Gravity Flow Mixer-Settlers Royston & Burwell AAEC 1972

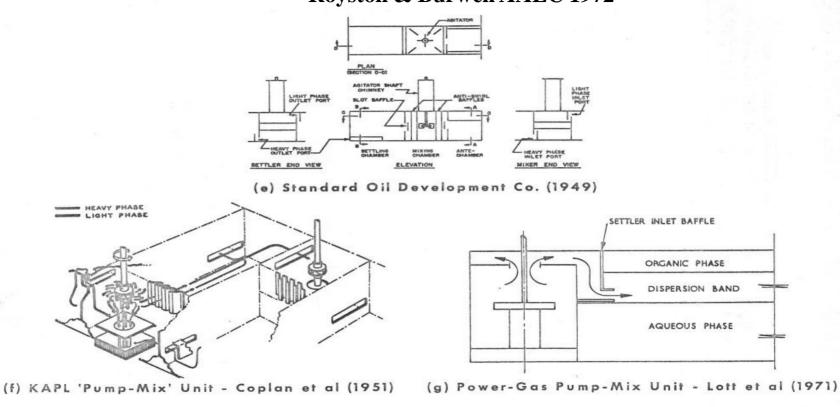


FIGURE 1(e) - (g) SKETCH OUTLINES OF HORIZONTAL MIXER-SETTLERS

Foundation Chemistry

- Cationic extractants are less selective for UO₂⁺
- Anionic extractants applied with acid liquors
 - Commercial extractant unproven for alkaline liquors
- Recognition of diluent and modifier choices
 - Aliphatic, narrow-cut kerosene favoured for low cost
 - Aromatic diluent favoured as biocide
 - Suppression third-phase formation
 - Isodecanol with secondary & tertiary amines
 - TBP or DBBP with organic phosphoric acid
- Scrubbing displaces impurities and entrainment
- Stripping with strong solution; Cl, SO₄, CO₃

Extractants

- Cationic extractants favoured with selected impurities
 - Can mitigate high Mo, SiO2, V
 - Co-recovery of rare earths elements
- Anionic extractants dominant application
 - Olympic Dam, Ranger, Key Lake
 - Following ion exchange; Eluex/Bufflex/Purlex process
- Mixed extractant for high chloride & sulphate PLS
 - Durango, Colorado & Honeymoon, South Australia
- Brand or generic names for each chemical formula

CLASS	CHEMICAL NAME	TRADE NAME	E STRUCTURE
Acidic Extractants	· .		но
(a) Phosphoric Acids	Mono-2-ethylhexyl phosphoric acid	M2EHPA	сн ₃ (сн ₂) зснсн ₂ 0
			°2 ^H 5
	di-2-ethylhexyl phosphoric acid	DEHPA	CH3 (CH2) 3 CHCH20 0
· .	·	. DZEHPA EHPA	C ₂ H ₅ P
			сн ₃ (сн ₂) ₃ снсн ₂ о он
			C ₂ H ₅
		Hostarex I	
		(HOE F2574 DP-8r	
		P-204	
	di-p-octylphenyl phosphoric acid	OPPA	
1			^{сн} 3(сн ²) ⁶ сн ² (Он
Tertiary amines		· ·	R ¹ R ² R ³ N
		Alamine 336,	$R^1 = R^2 = R^3 = CH_3(CH_2)_7$ -
•		TOA Adogen 381	$R^1 = R^2 = R^3 = CH_3CH(CH_2)_5^{-1}$
		haogen joi	
	u n 11	Hostarex A 324	3
ł			
	50% mixture of octyl and	Hostarex A_327	$R^1 = R^2 = R^3 = CH_3(CH_2)_7 - and$

decylamines Adogen 364 tri-isodecyl amine Adogen 382 Adogen 368

Adogen 363

Adogen 383

N-decyl-N-octyl-dodecylamine

tri-dodecylamine Ritcey and Ashbrook, Solvent Extraction"Principles and Application. Part1, Table 1, page 91, Elsevier 1984

 $R^1 = R^2 = R^3 = CH_3CH(CH_2)_7 R^1 = CH_3(CH_2)_7$, $R^2 = CH_3(CH_2)_9$, $R^3 = CH_3(CH_2)_{11}$ $R^{1} = R^{2} = R^{3} = CH_{3}(CH_{2})_{11}^{-1}$ $R^{L} = R^{2} = R^{3} = CH_{o}(CH_{o})$

 $R^{1} = R^{2} = R^{3} = CH_{3}(CH_{2})_{9}$

Feed Control

- Stable feed flow and chemistry improves performance
 - PLS storage or surge volume allows attenuation of variability
- Minimizing surge volume lowers project returns
- Simulation and trade-off study can specify optimum surge
 - 1 week live storage preferred by operators
 - 1 day live storage preferred by accountants
 - Surge analysis must include all direct and indirect costs
 - Life of project estimates needed for quantitative comparison
- Allow for level measurement, cleaning and leak detection

Feed Control

• PLS Storage Design; 25000 m³, approx 11 hours live.

Feed Control

• PLS Storage Design; 15,000 m³, approx 24 hours live.

Process Stages

- Objectives of mass transfer processes include;
 - Concentration of value elements
 - Separation of impurity elements
- Desirable features of process stages.
 - Operational and design simplicity
 - Safe and hygienic facilities
 - Optimum life-of-project costs

Extraction Stage

- Extraction; transfer of uranium and impurities
 - Optimize rate; depends on extractant, temperature, tenor
 - Approach to equilibrium mass transfer;
 - mixer stages, numbers and retention
 - Minimize impurity transfer by maximum uranium loading
 - Impurities in feed includes recycle from scrubbing
 - Minimize entrainment; OinA & AinO
 - Diligent management of crud
- Must operate organic continuous emulsion
 - Limits silica transfer and polymerization
 - In columns; Advance phase ratio, A:O = 12:1or lower
 - In Mixers; **Stage** phase ratio, A:O = 1.0 or higher

Downstream Stages

- Scrubbing displaces impurities and entrainment
 - water wash for chloride, fluoride & suspended solids
 - dilute sulphate displaces silica and other anions
 - conditioning of solvent for downstream stripping
- Stripping with dilute or concentrated anionic solution
 - strong acid if source is 'white' and cheap
 - carbonate scrub suited to caustic precipitation
 - sulphate wash to control pH into AMSUL strip
 - ammonium sulphate requires 'tight' water balance

Exchange Equipment

- Mixer-settlers are mainstay of USX technology
 - Various design improvements common with CuSX
- Pulse columns are proven for extraction stage
 - Favoured for multiple stages & crud handling
- Comparison needed for each project
 - Capex & opex
 - Operability and fire safety
 - Toleration of feed variations
 - Integration with upstream & downstream stages


Exchange Equipment – Pulse Columns

Exchange Equipment – Mixer Settlers

Solvent Condition

- Maintain concentrations of solvent components
 - Operators must track loading capacity
 - Direct assay or max-load test
- Avoid or manage degradation products
 - Prevent, Tolerate, Remove or Regenerate?
 - Recycle of dumped solvent with Caution
 - Protect solvent during suspension of operation
- Crud accumulation will promote solvent losses
 - Regular and routine collection and treatment
 - Avoid sudden or large changes of flow
 - Crud 'runs' will propagate stable emulsions

Phase Disengagement

- Standard design & operating parameter
 - E.g. specific settling rate and phase break time
- Depends in solvent character and condition
 - Generally worsens over time
 - Caused by high Eh or excess oxidant in PLS
 - And accelerated with crud accumulation
- Regular observation and measurements
 - Track and chart solvent conditions
 - Eternal vigilance is the price of freedom

- Dirty PLS is the major cause of crud in extraction
 - Target < 20 mg/L suspended solids
 - Control post-leach silica gypsum and jarosite precipitation
 - Every site had different crud which must be characterized
- Polymerization of silica
 - Slurry retention in ore leach at less intense conditions
 - Long retention of PLS can promote silica precipitation
 - Polish filtration of PLS after storage
 - Essential to operate mixers with organic phase continuity
- Crud also occurs in downstream stages
 - Transfer & Hydrolysis of metals; Zr, Ti, Bi, Mo, Fe

Recent Operation at Honeymoon USX

- Commissioning at Honeymoon Mine began in July 2011 following the successful water treatment and the subsequent commencement of leaching in the wellfields.
- Dried UOC product from Honeymoon was produced by late September.
- USX column operations throughput and recovery approached design rates by April 2012
- Operational issues during process commissioning included:
 - Organic entrainment caused by crud generation in Pulsed Columns;
 - High volumes of aqueous entrainment in the barren organic leaving strip settler no.2
 - Presence of a third phase typically in strip settler no. 2
 - High phase disengagement times in strip mixers

Recent Operation at Honeymoon USX

- Focus on reagent effects can be utilized in future USX plant designs may include:
 - Organic entrainment lowered by operator vigilance and stable phase continuity
 - The solubility of organic reagents is important in controlling entrainment in raffinate.
 - Metallurgical recovery requires stable conditions, e.g. extractant and modifier tenor
 - Frequent draining of the barren organic tanks leads to lower disengagement times
 - Additional organic acidification of PLS may be utilized
 - Solubility of third-phase must be managed by control of relative concentration of reagents
 - Off-site TBP analysis caused operational difficulties and may be expedites
 - Fresh strip solution to Strip 1improved pH control and lowered phase disengagement time
 - Operating Strip 2 with aqueous continuity could improve phase disengagement times
 - Alternatives to TBP as a third-phase modifier can be considered for future operations

Towards the Future

- USX has featured in uranium production for over 50 years
 - Utilised in Australia two largest uranium mines
- Future USX will reflect the expected trends of new projects
 - lower grade ores
 - tighter controls on water supply or discharge
 - higher proportion via in-situ recovery
- To remain competitive USX will need
 - greater stage recovery
 - lower solvent losses
 - higher tolerance of salinity.

Towards the Future

Operation & Location	Ranger, Northern Territory	Olympic Dam South Australia	Beverley South Australia	Honeymoon South Australia	Four Mile South Australia
Ore Category	Unconformity	Breccia	Sandstone	Sandstone	Sandstone
Leach Chemistry	Acid sulphate	Acid sulphate, 3 g/L chloride	Acid sulphate, 4 g/L chloride	Acid sulphate, 8 g/L chloride	Acid sulphate
Recovery Technique	Amine SX	Amine SX	Strong base IX	Mixed SX	Strong base IX
Nominal Capacity, tU	4660	3820	850	340	1150

Operation & Location	Kintyre, Western Australia	Wiluna, Western Australia	Yeelirrie, West Australia	Lake Maitland West Australia	Ranger Expansion
Ore Category	Unconformity	Surficial/calcrete	Surficial/calcrete	Surficial/calcrete	Stockpiles
Leach Chemistry	Acid sulphate	Alkali carbonate	Alkali carbonate	Alkali carbonate	Acid sulphate
Recovery Technique	DP	DP	DP	DP	Amine SX
Nominal Capacity, tU	2000	680	3000	850	TBC