IAEA International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle

**A Market in Transition** 

**Nick Carter, Senior Vice President** 

June 27, 2014 The Ux Consulting Company, LLC www.uxc.com





IIC

2

#### **Uranium Demand after Fukushima**



### Change in Production Plans – Pre- vs. Post-Fukushima



© UxC





# **Uncovered Utility Requirements**





### Utility LT U<sub>3</sub>O<sub>8</sub> Contract Volume 1990-2014





# **Utility Inventories**



#### U.S. Utilities

- In 2003, ahead of the last price run-up, U.S. utilities held 46 million pounds U<sub>3</sub>O<sub>8</sub>e
  - Inventories could fuel U.S. reactors, on average, for 9 months
- At the end of 2013, U.S. utilities held more than double that amount at 112 million pounds U<sub>3</sub>O<sub>8</sub>e
  - Inventories could fuel U.S. reactors, on average, for 29 months (~2.5 years)

#### European Utilities

- In 2005, EU utilities held 101 million pounds  $U_3O_8e$ 
  - Inventories could fuel EU reactors, on average, for 22 months
- At the end of 2012, EU utilities held 136 million pounds  $U_3O_8e$ 
  - Inventories could fuel EU reactors, on average, for almost 3 years

### Japanese Utilities

- Post-Fukushima, Japanese utilities have up to 60 million pounds U<sub>3</sub>O<sub>8</sub>e in various forms
  - Inventories could fuel Japanese reactors, on average, between 4 to 5 years

# **Secondary Supplies**



- Despite end of U.S.-Russia HEU deal, secondary supplies are having a major impact on uranium prices
- Secondary supplies will continue to be a low cost supply source and meet 18-25% of total demand through 2020
  - Can assume a \$0 cost for the sake of market analysis
- Enricher underfeeding has been an important part of secondary supply since the Fukushima accident
  - URENCO underfeeding estimated at 4-5 million pounds per annum
  - Russian underfeeding/tails re-enrichment estimated at ~10+ million pounds per annum
- Recent U.S. DOE Secretarial Determination allows for the supply of up to 7-8 million pounds annually through 2022
- Commercial inventory drawdown/sales approximate 3-5 million pounds per annum
  - Mox and Reprocessed U accounts for 7-10 million pounds annually going forward



### Major World Supply Sources 2008-2030 – Mid Production Case





Source: Uranium Market Outlook, Q2 2014

HC

### Major World Supply Sources 2008-2030 – Low Production Case





Source: Uranium Market Outlook, Q2 2014

HC

# **2013 Production Cost Curve**





### Mid Production Case By Costs, 2014-2030





Sources: Uranium Production Cost Study, UMO Q2 2014

LC

# Transitioning Toward Equilibrium

### Near and Medium-Term Outlook

- Significant inventory overhang over 2015-2017 will require existing production be no greater than ~145 million pounds (10 million pounds less than in 2013)
- Secondary supplies will meet up to one-quarter of uranium demand over the next several years despite end of HEU deal
- Marginal production costs do not push higher until start of the next decade

| (Million Ibs U <sub>3</sub> O <sub>8</sub> ) |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|----------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|                                              | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 |
| Real Demand For Production                   | 129  | 144  | 144  | 146  | 156  | 158  | 163  | 170  | 178  | 186  | 200  | 209  | 212  | 220  | 227  | 235  | 237  |
| Planned Mid-Production Case                  | 152  | 162  | 171  | 177  | 176  | 181  | 188  | 191  | 194  | 199  | 201  | 202  | 203  | 182  | 183  | 183  | 183  |
| Adjustment to Plans                          | -22  | -19  | -27  | -30  | -20  | -23  | -25  | -21  | -16  | -12  | -1   | 8    | 9    | 38   | 44   | 52   | 54   |

Failure to defer/delay production will prolong current price downtrend

# Long-Term Outlook



# Demand growth improves in 2015-2020, but no need for new production until 2020 or later

• Largely driven by China, India, Russia, South Korea, and U.A.E.

#### Fukushima negativity should decline

- Japan has few alternative energy options to nuclear
- Restarts would also mitigate underfeeding from excess SWU capacity
- Nuclear power expected to play a larger role in reducing global CO<sub>2</sub> emissions
  - China could move existing target of 133 GWe of nuclear capacity by 2030 to 150-200 GWe to achieve meeting greenhouse emissions target.
  - U.S. EPA Carbon Limits
- Increased price volatility in the post-2020 period when more uranium production will be needed to replace depleted resources and meet increasing demand
  - Significant lead times to bring online new production centers
  - Movement back to a production-driven market

# **Thank You!**

# **Questions?**