

STATE ATOMIC ENERGY CORPORATION "ROSATOM"

The Concept of Training System for Newly Established Operator in Embarking State

Y. Seleznev, V. Aspidov, V. Artisiuk

Rosatom Central Institute for Continuing Education&Training

International Conference on Human Resource Development for Nuclear Power Programmes: Building and Sustaining Capacity IAEA Headquarters, Vienna, Austria 12–16 May 2014

Contents

- 1. WWER Technology in a nut-shell
- 2. Training of NPP operating personnel
- 3. Training solutions for recipient countries

WWER Technology – History of Implementation

- AES-2006
 (WWER-1200,
 60 years lifetime,
 90% capacity
 factor)
- WWER-TOI
 (WWER-1300,
 Typical
 Optimized
 Informative advanced
 project)
- □ **AES-91** (WWER-1000)
- WEST:

 □ AES-92 Russia:

(WWER-1000)

NPPs with WWER Type Reactors

type reactors are being operated around the world: Finland CZECH REP. Czech Republic 6 NPP "Dukovany" **FINLAND** Armenia 4 VVER-440 NPP "Loviisa" NPP "Temelin" Bulgaria 2 VVER-440 2 VVER-1000 Hungary Iran UKRAINE GERMANY China NPP "Nord" NPP "Zaporozhskaya" India 6 VVER-1000 4 VVER-440 NPP "Rheinsberg" NPP «Rovenskaya» Slovakia 2 VVER-1000 1 VVER-70 15 Ukraine 2 VVER-440 NPP "Khmelnitskaya" Russia 17 2 VVER-1000 NPP "Youzhno-Ukrainskaya" 3 VVER-1000 CHINA NPP "Tianwan" **ARMENIA** 2 VVER-1000 NPP "Metsamor" **Framework Agreement** 1 VVER-440 on the construction **SLOVAKIA** 57 of the next 2 VVER-1000 NPP "Bohunice" 4 VVER-440 **BULGARIA** NPP "Mokhovce" NPP"Kozloduv" 2 VVER-440 4 VVER-440 2 VVER-1000 **HUNGARY INDIA IRAN** NPP "Paks" **NPP** NPP "Bushehr" 4 VVER-440 "Kudankulam" 1 VVER-1000 2 VVER-1000 under

comissionning

At present more than 50 nuclear power plant units with WWER-

Expansion of Russian NPP Technology

Currently Rosatom has negotiations over construction of 23 nuclear power units overseas. Nine power units are under construction in Russia

1.WWER in a nutshell

WWER vs PWR

TABLE V-1. Fuel Features

Reactor type	Fuel material	Fuel rod cladding ^a	Typical Assembly	Enrichment	
AGR	UO_2	Stainless steel	Circular array of pins in graphite sleeve	2 - 4%	
BWR UO_2		Zircaloy-2	Square array	Up to 4.95%	
Magnox	U metal	Magnox alloy	-	Natural	
RBMK	UO_2	E110, E635	Circular array	Up to 2.8%	
PHWR	UO_2	Zircaloy-4	Circular bundle	Natural	
PWR	UO_2	Zircaloy-4	Square array	Up to 4.95%	
WWER	UO_2	E110, E635	Hexagonal array	Up to 4.95%	

^a Zircaloy-2 and -4 are alloys of zirconium with about 1.5% tin as the main alloying element. Magnox alloy is magnesium with about 1% aluminium or zirconium. Both E110 and E635 are alloys of zirconium with about 1% niobium.

NUCLEAR

TECHNOLOGY

REVIEW

2007

Find difference!

Specific of Cladding: long experience with Zr 1% Nb alloy

Extensive tests and over 20 years experience proved safe operation of cladding made of 1%Nb zirconium alloy E110 at temperature below 350 °C. That value has been detected the lowest temperature for structural changes in material. Below 350 °C there is no evidence of plastic deformation or any other mechanical phenomena. To improve plastic deformation resistance the E365 alloy (1% Nb, 1.5% Sn, 0.5%Fe) was introduced in 2000. Test results demonstrate that Zr1%Nb alloy in VVERs is more resistant to oxidation than Zircaloy (ZrSn alloy) in PWR.

Specimen	Material	Mechanical Test	Test Temperature	
1	Zr-1%Nb-O	Internal pressure	350°C	
2	Zy-4	Internal pressure	350°C	
3	М5™	Internal pressure	350°C	
С	Zr-1%Nb-O	Internal pressure	350°C	
D	Zy-4	Internal pressure	350°C	
H	М5™	Internal pressure	350°C	
		(stress relaxation at E=0.8 %)		

F.Onimus et al. "Plastic deformation of irradiated Zirconium alloys: TEM Investigations and Micro-Mechanical Modelling", J. of ASTN International, Vol.2, 2005

WWER Features

WWER – THE LOWEST OCCUPATIONAL EXPOSURE LEVEL

1.WWER in a nutshell

E&T Path for the Position of Control–Room Operator (in Russia)

University Specialization

«Nuclear Power Plants and **Facilities**»

Fields of professional competences:

- Management
- NPP structure & design Commissioning & maintenance

4 yrs - Bachelor degree 2 yrs - Master degree 5.5 vrs - Specialist

The specific of Russia is that, compared to western education system, there is a university specialty "nuclear power plant and facilities" especially focusing the staffing of Nuclear Power Plants.

NPP Personnel Development: Required On-The-Job Experience

WWER NPP Staffing

11

Number of construction workers and fitters by years for two units NPP

Example for Novovoronezh NPP-2 (by design documentation)

Jobs	1 yr	2 yr	3 yr	4 yr	5 yr	6 yr	7 yr
Construction workers	1085	2374	5341	5178	1625	209	10
Tele-equipment fitters		193	397	1451	1783	695	36
Ventilation equipment installers		35	51	106	64	12	
Construction electricians			283	1440	1700	600	
Insulation workers		7	82	182	228	184	
TOTAL:	1085	2609	6154	8357	5400	1700	46

Role of a Training Centre in NPP Startup in Newcomer Country

Stages of NPP Personnel Training: the case of recipient country

Configuration of the Consortium to Support the HRD Programme for NPP Staffing in Recipient Country

15

Stages of NPP Personnel Training: the case of recipient country

Staffing and Scheduling for VN NPP (2 units)

No of people / Yr	rs -5	-4	-3	-2	-1	1	2	3	4
natonal staff	48	128	248	408	608	1176	1176	1176	1176
Russian operating staff	50	80	120	160	200	200	120	60	0
Russian instructors	5	15	30	55	55	30	15	5	0
Russian staff - total	55	95	150	215	255	230	135	65	0

Thank You for Your Attention! Welcome to Rosatom CICET

http://rosatom-cicet.ru/

http://rosatom-cicet.ru/?page_id=98

INTERNATIONAL TRAINING CENTRE

CAPACITY BUILDING FOR NATIONAL NUCLEAR INFRASTRUCTURE IN EMERGING NUCLEAR COUNTRIES

Attachments

Nuclear Engineering Education in Russia

The main source of human resources for Russian Nuclear Sector is National Nuclear Research University MEPhI and the Consortium of universities supported by Rosatom

Universities supported by Rosatom

- 1. NNRU MEPhI
- 2. ISPU
- 3. MGSU
- 4. MSTU
- 5. MPEI
- 6. MISIS
- 7. NSTU
- 8. Lobachevsky UNN
- 9. Mendeleyev UCTR
- 10. SPSU
- 11. SPbSPU
- 12. TPU
- 13. UrFU
- 13 leading universities of Russia including a National University and 9 research universities
- Over 300 000 students and 50 000 lecturers in 23 cities of 19 regions of Russia, including all closed cities
- 56 scientific and educational centers with leading enterprises of the sphere

NNRU MEPhl unites:

11 universities and 13 colleges

Around 35 000 students

Over 2000 lecturers

Over 1600 professors and associate professors

Over 500 000 m² academic area

60 higher education majors

45 secondary education majors

STATE ATOMIC ENERGY CORPORMS "ROSATOM"

Ministry of Education and Science of the Russian Federation

> Ivanovo State **National Research University**

Bauman Moscow

National Research University St. **National Research University**

National University of Science and

Ural Federal University n.a. the

St. Petersburg

Nizhniy Novgorod State University

Nizhniy Novgorod State Technical

D. Mendeleev Moscow University

KEY UNIVERSITIES CONSORTIUM

Atomic Energy Corporation «ROSATOM»

Campus

Obninsk Institute of Nuclear Power

National Research

Nuclear University

«MEPhl»

National Research

Tomsk Polytechnic

University

Central Institute for Continuing Education and Trainings

All-Russian Scientific Research Institute for Nuclear Power **Plant Operation**

ATOMTECHENERGO

«ROSENERGOATOM» CONCERN

Balakovo NPP

Rostov NPP

Kalinin NPP

Novovoronezh NPP

NPP **STAFF**

CONSORTIUM OF STATE ATOMIC ENERGY CORPORATION «ROSATOM» **FACILITIES**

CONTINUING EDUCATION

1 - 15 YEARS

EDUCATION

5 - 7 YEARS

PRE-UNIVERSITY

EDUCATION

(INCLUDING RUSSIAN LANGUAGE COURSE)

Establishment of an international campus in Obninsk based on Obninsk branch of NRNU MEPhl and CICE&T

2012 2010 2011 2016 START: Expanding the pool of Formation of the Advance training of Implementation of a system of countries-recipients of foreign specialists on the interuniversity Russian nuclear education export programmes of Russian Russian nuclear cooperation in 25 countries education nuclear education programme · Promoting Consortium of Rosatom's Vietnam 169 reference universities Vietnam 99 Vietnam 29 126 in international education market. Turkey Turkey 50 Jordan Mongolia 19 • Kazakhstan Opening of International Nuclear Education Centers in the universities Jordan 10 Mongolia **Jordan** 10 Kazakhstan 20 · Nuclear power engineering training in the 9 Mongolia Total: 42 344 Obninsk International Center for **1100** Total: Total: 188 foreign specialists simultaneous.

Programmes of international cooperation in education and knowledge transfer:

- ENEN-RU project «Cooperation infrastructure development in the field of nuclear education" (Rosatom-Euratom agreement)
- Educational programmes of IAEA, WNU
- Working group on formation EurAsEC Cooperation Council
- Cooperation programmes with foreign universities (Turkey, Vietnam)

Potential market in Asia-Pacific

Potential market is estimated as

Scheme of Professional Education at Far-Eastern Federal University (FEFU)

Management

BS in Nuclear Enginnering

General structure of the BS programme (numers stand for credit units, 1 credit unit – 36 academic hours).

Distribution of NPP oriented disciplines in professional cycle (totally 55 credit units).

Simulator training in the Far Eastern Federal University (Sept 2013)

http://rosatom-cicet.ru/?p=159

