

International Ministerial Conference on Nuclear Power in the 21st Century, Saint Petersburg, June 27–29, 2013

Continuous Improvement of Nuclear Safety based on Lessons Learned from Fukushima Accident and Safety Research Cooperation

Prof. Naoto Sekimura, The University of Tokyo, Japan

Contents

- Lessons Learned from the Fukushima Dai-ichi Accident
 - based on the Report by Nuclear Safety Division of Atomic Energy Society of Japan (AESJ/NSD)
- Continuous Improvement of Safety
 - Probabilistic Risk Assessment
 - Graded Approach
 - Multi-disciplinary and International Collaboration
- Summary

Fukushima Accident

- The TEPCO's Fukushima Dai-ichi accident was caused by external events; earthquake and tsunami.
- While the earthquake caused damage at external power supply, there is no evidence so far that it produced to the plants mechanical and structural damage.
 - Although one cannot deny any impact by the earthquake, it is considered that the majority of the damage was caused by the tsunami.
- Protection against external hazards must be enhanced according to the "Defense-in-Depth" concept, which is believed to be valid even after the accident.
- Safety regulatory system pre-existed in Japan was not strong enough to enforce the necessary upgrades in protections against external hazards and against resulting severe accidents.

AESJ/NSD Report on Fukushima Accident

- The Nuclear Safety Division of the Atomic Energy Society of Japan (AESJ/NSD) issued the "Report of Seminars to Investigate the Accident at the Fukushima Dai-ichi Nuclear Power Station – What were wrong? What should be done from now on?" (March, 2013)
- AESJ/NSD pointed out major issues which are highly related with the Defense-in-Depth against external events.
 - Insufficient design provision against tsunami,
 - No practical accident management (AM) under actuallygenerated environments during the accident, and
 - Insufficient provision for accidents far-exceeded from the postulated design condition.

(1) Insufficient Design Provision against Tsunami

- Postulated tsunami, which was decided with the method developed by the Civil Engineering Society of Japan based on the historical tsunami records, was not high enough.
- We cannot define design basis hazard (DBH) only from historical records. Cooperation is needed between nuclear safety professionals and natural phenomena experts.
- Safety requirements against various initiators, e.g. volcano, internal fire and internal flooding, are needed.

(2) No Practical Accident Management

- Some accident management operations were not successfully implemented under the actual conditions produced by:
 - Natural phenomena including after shocks and repetitive tsunami attacks, and
 - Severe accident phenomena including hydrogen explosion at reactor buildings and high radiation level.
- Licensees and regulators must examine whether AM operations are really carried out with high reliability taking various effects by natural phenomena and severe accident conditions into account.

(3) Far-exceeded from the Postulated Design Condition

- There was no effective mitigation feature under accident conditions far beyond the postulated design condition.
- It revealed the weakness of the nuclear facilities against extreme natural hazards.
- Some provisions, including mobile devices, are needed against unexpected accident conditions.

Summary of Lessons Learned

> Estimation of external hazard has large uncertainty.

- Deficiency in Defense-in-Depth protection caused Fukushima accident.
- Diversity and flexibility are important for these measures.
- Elimination of cliff-edge effect is essential for external initiators.
 - Diversity and flexibility are important for these measures.
- Effectiveness of safety measures can be evaluated using PRA (Probabilistic Risk Assessment).

Experts Cooperation for Probabilistic Risk Assessment

Safety Research and Cooperation

Knowledge Management in Complex System

Measure of Resilience in Complex Systems

Resilience Triangle

Essential Characteristics of Resilience

Summary

- > The Defense-in-Depth Concept
- Continuous Improvement of Nuclear Safety and Radiation Protection with Graded Approach based on Probabilistic Risk Assessment
- Collaborative Work with Nuclear and Non-nuclear Experts
- Nuclear Safety as Multi-disciplinary Approach
- Resilience Engineering

Thank you very much for your attention

