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Fukushima Accident
 The TEPCO’s Fukushima Dai-ichi accident was caused by 

external events; earthquake and tsunami.

 While the earthquake caused damage at external power supply, 
there is no evidence so far that it produced to the plants 
mechanical and structural damage.
• Although one cannot deny any impact by the earthquake, it is considered 

that the majority of the damage was caused by the tsunami.

 Protection against external hazards must be enhanced 
according to the “Defense-in-Depth” concept, which is believed 
to be valid even after the accident.

 Safety regulatory system pre-existed in Japan was not strong 
enough to enforce the necessary upgrades in protections against 
external hazards and against resulting severe accidents.
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 The Nuclear Safety Division of the Atomic Energy Society of 
Japan (AESJ/NSD) issued the “Report of Seminars to 
Investigate the Accident at the Fukushima Dai-ichi Nuclear 
Power Station – What were wrong? What should be done 
from now on?” (March, 2013)

 AESJ/NSD pointed out major issues which are highly related 
with the Defense-in-Depth against external events.

• Insufficient design provision against tsunami,

• No practical accident management (AM) under actually-
generated environments during the accident, and

• Insufficient provision for accidents far-exceeded from the 
postulated design condition.

AESJ/NSD Report on Fukushima Accident
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(1) Insufficient Design Provision against Tsunami

 Postulated tsunami, which was decided with the method 
developed by the Civil Engineering Society of Japan based 
on the historical tsunami records, was not high enough.

 We cannot define design basis hazard (DBH) only from 
historical records.  Cooperation is needed between nuclear 
safety professionals and natural phenomena experts.

 Safety requirements against various initiators, e.g. volcano, 
internal fire and internal flooding, are needed.
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(2) No Practical Accident Management

 Some accident management operations were not 
successfully implemented under the actual conditions 
produced by:

• Natural phenomena including after shocks and repetitive tsunami 
attacks, and

• Severe accident phenomena including hydrogen explosion at 
reactor buildings and high radiation level.

 Licensees and regulators must examine whether AM 
operations are really carried out with high reliability 
taking various effects by natural phenomena and severe 
accident conditions into account.
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(3) Far-exceeded from the Postulated
Design Condition

 There was no effective mitigation feature under accident 
conditions far beyond the postulated design condition.

 It revealed the weakness of the nuclear facilities against 
extreme natural hazards.

 Some provisions, including mobile devices, are needed 
against unexpected accident conditions.
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Summary of Lessons Learned

 Estimation of external hazard has large uncertainty.
• Deficiency in Defense-in-Depth protection caused 

Fukushima accident.
• Diversity and flexibility are important for these measures. 

 Elimination of cliff-edge effect is essential for external 
initiators.
• Diversity and flexibility are important for these measures. 

 Effectiveness of safety measures can be evaluated 
using PRA (Probabilistic Risk Assessment).
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Safety Research and Cooperation
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Hardware System
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Measure of Resilience in Complex Systems 
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Essential Characteristics of Resilience
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 The Defense-in-Depth Concept

 Continuous Improvement of Nuclear Safety and 
Radiation Protection with Graded Approach based 
on Probabilistic Risk Assessment

 Collaborative Work with Nuclear and Non-nuclear 
Experts

 Nuclear Safety as Multi-disciplinary Approach

 Resilience Engineering

Summary
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Thank you very much for your attention
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