Strengthening Defence in Depth in Emergency Preparedness and Response by Pre-establishing Tools and Criteria for the Effective Protection of the Public During a Severe Reactor Emergency

Tom McKenna, IAEA

TUESDAY - 22 OCTOBER 2013 TOPICAL SESSION 3: 17:05 - 17:30

IAEA International Atomic Energy Agency

Key IAEA publications

GSG-2	
Safety Guide	

EPR-NPP Public **Protective** Actions

2011

- Dose warranting action (Generic criteria)
- Plant conditions warranting action -Emergency classification system (EALs)
- Off site measurements (OILs) warranting action

2013

- Latest guidance on Public Protective Actions
- Considered Fukushima lessons

The public protective action strategy is driven by 3 main objectives:

- 1. To prevent injuries or deaths (severe deterministic effects)
- 2. To reasonably reduce the risk of cancers (stochastic effects)
- To prevent the public from doing more harm than good – actions taken in the belief they are protecting themselves (e.g. not treating injured)

Severe health effects off-site require:

Failure to act when SF is lost could result in deaths and other severe health effects off-site that could have been prevented

-REACTOR CORE

EA

Core heats up at 1 C/s after shutdown if not covered with water

Control room staff can project fuel damage (based on status of SFs needed to protect the fuel in the core)

Operator cannot predict containment failure (most release pathways are unpredictable)

Emergency classification system

Triggers fast and coordinated response (without meetings), based on emergency action levels

Class	Plant conditions	Protective actions off site
General emergency	 Projected or actual severe damage to fuel Loss of control 	Immediate urgent protective action
Site area emergency	If additional failures → severe damage to fuel	 Alert officials and public to prepare Off-site monitoring
Facility emergency	On site risk only	None
Alert	Degraded or uncertain conditions - no known danger to fuel	None

Classification based on emergency action levels (EALs)

- Predetermined observable thresholds
- Operator classifies within 15 minutes of being exceeded and notifies off-site within 30 minutes
- Example for a General Emergency: Projected loss of AC and DC for a sitespecific time that leads to fuel damage (e.g. 40 min)

Act to protect public when severe damage to fuel is projected or detected

> 1 hour General Emergency → public starts to take action (in all directions)

GENERIC CRITERIA (GSG-2)

Protective actions and other response actions justified in general

After a release \rightarrow Adjust actions based on monitoring

Predetermined operational intervention levels (OILs) – value exceeded

Default OILs are provided for: [Section 6, EPR-NPP PPA]

Importance of plain language explanations

Not clearly answering this question has resulted in:

- Voluntary abortions
- Unsafe evacuation of patients (deaths)
- Refusal to treat patients
- Stigma
- Economic impact
- Psychological distress
- etc.

Perspective charts are provided to answer:

[Chart1 page 50 EDD_NDD DDA 1

LIVING IN THE AFFECTED AREA CHART 1 For a release of radioactive material from a LWR or RBMK For all members of the public (including children and pregnant women) Record on the doce rate at 1m above ground level FOR / DAYS, PROVIDING ACTIONS ARE TAKEN TO HEALTH CONCERNS 100 µSv/h REDUCE INGESTION OF (check OIL1 and OIL2) **PROVISIONALLY SAFE** FOR RADIOACTIVE MATERIAL** Read footnote * for measurements 1 MONTH, PROVIDING ACTIONS between 25 and 100 µSv/h ARE TAKEN TO REDUCE INGESTION OF RADIOACTIVE MATERIAL 25 µSv/h SAFE** FOR EVERYONE, 10 µSv/h PROVIDING FOOD, MILK AND DRINKING WATER ARE SAFE 1 µSv/h NATURAL BACKGROUND DOSE RATE reas showing a dose rate of 25 to 100 µSv/h during the first 10 days after the release are safe (according to international safety standards), providing food, milk and drinking water are safe. Safe according to international safety standards - For further information read the back of this ch

Summary of response time objectives

00:00
00:15
00:30
00:45
01:00
Hours
Days

