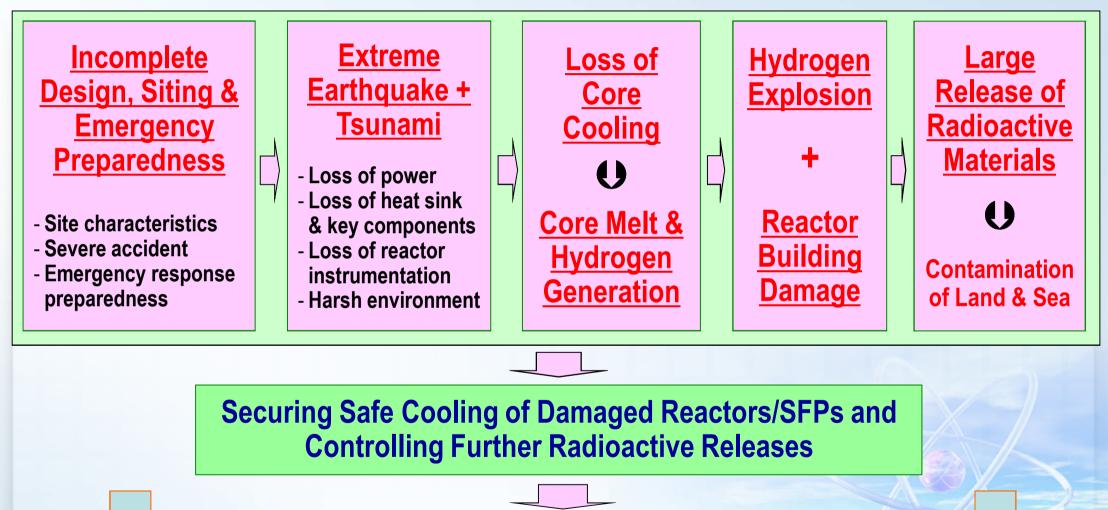
International Conference on Topical Issues in Nuclear Installation Safety: Defence in Depth – Advances & Challenges for Nuclear Installation Safety Vienna, Austria, 21-24 October 2013

Nuclear Safety R&D for Knowledge-Based Implementation of Defence in Depth

Won-Pil BAEK

Vice President for Nuclear Safety Research Korea Atomic Energy Research Institute (KAERI) wpbaek@kaeri.re.kr


Outline

Fukushima Accident

- Defence in Depth (DID)
- Knowledge-Based Implementation of DID & Nuclear Safety R&D
- Nuclear Safety R&D in Korea
- **Concluding Remarks**

Fukushima Accident (1)

Overall Progression

Decontamination, Decommissioning and Disposal of Facility (incl. Environmental Restoration)

Fukushima Accident (2)

Key Characteristics

- Severe Accident Initiated by Extreme Natural Disaster
 - TMI & Chernobyl: Design/equipment failure + human factors
 - Fukushima: Natural disaster+ design failure + human factors
 - Prolonged losses in electricity supply & safety-related equipment due to earthquake/tsunami

• Severe Accident in Multiple Units and Crisis for a Long Time

- Extensive core melting in three (3) reactors
- Hydrogen explosion in three (3) reactor buildings
- Damage in the reactor vessels and containment vessels
- Threat to the safety of spent fuels in SFPs
- Several months for escaping from urgent situation

• Extensive Contamination of (Atmosphere,) Land and Sea due to the Release of Radioactive Materials

- Large radioactive release: 10~20% of Chernobyl, INES Level 7
- No immediate casualty due to radiation exposure
- Extensive contamination & ~115,000 evacuees

Successful in minimizing radiation exposure; but extensive contamination, societal crisis & enormous economic impact

Fukushima Accident (3)

Fundamental Causes: Lack of Preparation

- Insufficient Consideration of Japan-Specific Site Characteristics in Constructing US-Designed BWRs
 - Earthquake ? 0.18g → 0.447g vs. 0.561g
 - Tsunami ? 3.1m → 5.7m vs. 15m
 - Location of EDGs, DC batteries, etc.
- Decision Making without Sufficient Knowledge
 - Over-confidence on NPP safety: severe accident, external events
 - Insufficient exchange/transfer of information among and within relevant organizations
 - Isolation of industry & regulator from other academic sectors
- Insufficient Safety Culture
 - Past records of TEPCO's weak safety culture
 - Insufficient learning from past experience & research findings
- Institutional & Regulatory Failure
 - Insufficient regulatory independence: METI > ANRE > NISA
 - Limited role of experts/professionals

Fukushima Accident (4)

□ Technical Aspects (1)

- Lack of Countermeasures against Large-Scale Tsunami(s)
 - Design basis tsunami + Improper provision against BDB tsunami
 - Improper location of safety-important facilities, incl. basement and/or first floor location of EDGs and DC batteries

• Insufficient Countermeasures against Severe Accident

- Weakness of Mark-I containment highlighted in 1980's & 1990's
- Effectiveness of Severe Accident Management Program implemented in 1990's
- Incomplete SAMGs & insufficient training w.r.t. SBO conditions
- Insufficient understanding of major players on severe accident issues
- Instrumentation for severe accident conditions

Deteriorated Working Environment

- Roads closed by earthquakes & tsunamis
- Large amount of debris preventing on-site movement
- Continuous aftershocks with frequent tsunami alerts
- Complete loss of lighting inside containment
- Telecommunication networks, etc.

Fukushima Accident (5)

□ Technical Aspects (2)

- Improper Management of Accident Conditions
 - Misjudgment on the operational status of Unit 1 isolation condensers
 - Poor handling of water injection at Unit 3: Manual stop of HPCI without checking the status of DC batteries to open SRVs
 - Late operation of containment vent valves

In-sufficient Understanding of Reactor Conditions

- Unreliable information on reactor water levels
- Misunderstanding (?) of the states of the damaged cores
- Insufficient/ineffective information sharing among major players
- No prompt advices from external experts

Severe Accidents in Multiple Units

- Initial emergency at 10 units (Fukushima-I & II) of TEPCO with limited resources
- Long-lasting severe situation in 4 units
- Effects of hydrogen explosions and/or radioactivity releases from neighboring units

Outline

Fukushima Accident

Defence in Depth (DID)

- Knowledge-Based Implementation of DID & Nuclear Safety R&D
- Nuclear Safety R&D in Korea
- **Concluding Remarks**

Defence in Depth (DID) (1)

Defence in Depth (DID)

• Objectives:

Accident Prevention + Accident Mitigation

• Approaches:

Multiple Physical Barriers + Multiple Levels of Protection

Basic Assumptions

- There will be errors in design
- Equipment will occasionally fail
- People will occasionally make mistakes

Defence in Depth (DID) (2)

DID – Multiple Levels of Protection [INSAG-12]

Levels	Objective	Essential Means
Level 1	Prevention of abnormal operation and failures	Conservative design and high quality in construction & operation
Level 2	Control of abnormal operation and detection of failuresControl, limiting & protection systems and other surveillance features	
Level 3	Control of accidents within the design basisEngineered safety features & accident procedures	
Level 4	Control of severe plant conditions, including prevention of accident progression and mitigation of the consequences of severe accidentsComplementary measures accident management	
Level 5	Mitigation of radiological consequences of significant release of radioactive materials	Off-site emergency response

Defence in Depth (DID) (3)

DID Issues for Fukushima Accident

- An example of the incomplete implementation of DID
- Simultaneous loss of multiple protection levels

Defence Levels		DID Issues for the Fukushima Accident
Multiple Barriers		 Weakness of Mark-I containment Location of SFP (at high elevation of the reactor building)
Multiple Levels of Protection	Level 1	 Vulnerability of Mark-I containment Design basis external events (earthquake, tsunami, etc.)
	Level 2	 Provisions against SBO Loss of UHS
	Level 3	 Provisions against SBO Location of safety important equipments, loss of UHS Instrumentation/monitoring
	Level 4	 Provisions against SBO Mitigation features for hydrogen control, venting, etc. Accident management procedures & operator training
	Level 5	 Emergency evacuation & medical treatment Radiation monitoring

Defence in Depth (DID) (4)

3-Steps for Prevention & Mitigation of Accidents

High Level of Installation Safety (Incl. siting, construction & maintenance)

Best Procedures & Training (EOP, SAMG, EDMG, etc.)

Creative Response in case of Unprepared Events

- Improved DID & its implementation
- Continuous safety enhancement based on R&D findings & operating experiences
- Thorough analyses with best available scientific knowledge
- Imagine the unimaginable
- Use of both on-site & off-site resources
- Practical training & education
- High-quality trained & experienced staff
- Understanding of underlying physics & design characteristics
- Advisory expert groups with sufficient knowledge on plant details

Knowledge-based implementation of defence in depth is a key factor for securing a high/acceptable level of safety.

Outline

- **Fukushima Accident**
- **Defence in Depth (DID)**
- Knowledge-Based Implementation of DID & Nuclear Safety R&D
- **Nuclear Safety R&D in Korea**
- Concluding Remarks

Knowledge-Based Implementation of DID & Nuclear Safety R&D (1)

Do "Right" Thing "Right" for Securing a High Safety Level

By

Fully Utilizing the Best Available Scientific Knowledge, Resources and Human Wisdom

in

Effective Communication with Stakeholders

Knowledge-Based Implementation of DID & Nuclear Safety R&D (2)

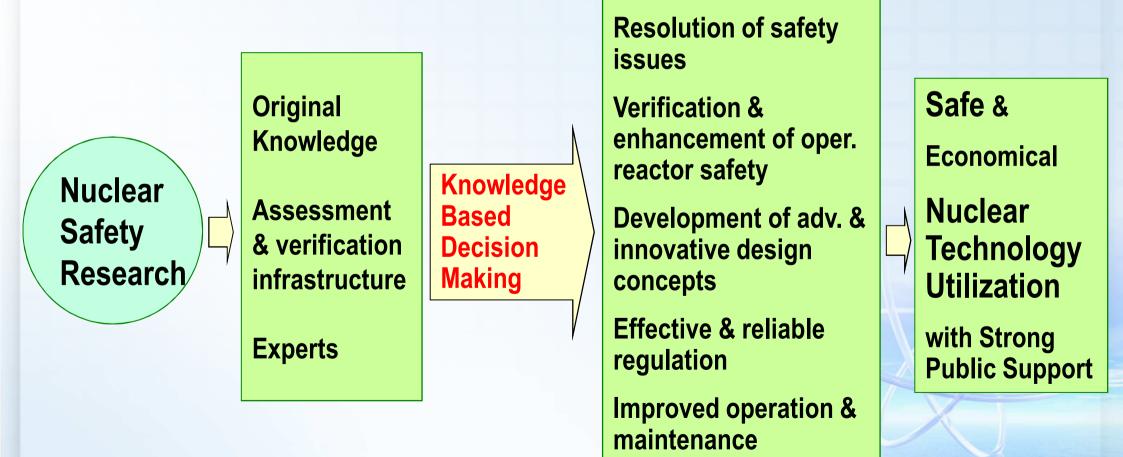
Knowledge-Based DID Implementation

• 3 Elements : Knowledge Generation + Effective **Communication + Applications/Implementation**

Generation of Knowledge

- Nuclear safety R&D utilizing the best available infrastructure & resources
- Analysis of operating experiences including accidents
- Organization of knowledge/information into ready-to-use forms
- Effective Communication of Knowledge/Information
 - **Transfer & sharing of information**
 - **Collaborative R&D among stakeholders**
- Application of Knowledge/Information
 - **Knowledge-based decision making**
 - Continuous safety improvement using new knowledge
 - Thorough assessment & verification during DID implementation
 - **Improved HMI for emergency operation & accident management**

Knowledge-Based Implementation of DID & Nuclear Safety R&D (3)


Requirements of Nuclear Safety R&D [INSAG-16,2003]

- Maintaining necessary technical expertise in all safety disciplines through a vigorous educational process
- Enhancement of analytical tools and techniques to better quantify safety margins and to facilitate better decisions
- Maintaining experimental facilities to provide data to elucidate basic physical processes, to confirm and validate analytical tools, and to respond to new safety problems
- Maintaining a pool of safety experts in institutions firmly rooted in the pursuit of excellence with current knowledge of research in all disciplines relating to safety
- Attraction of capable scientists and engineers through major nuclear research projects
- Achieving the public confidence by a mature regulator possessing the necessary tools and expertise

Knowledge-Based Implementation of DID & Nuclear Safety R&D (4)

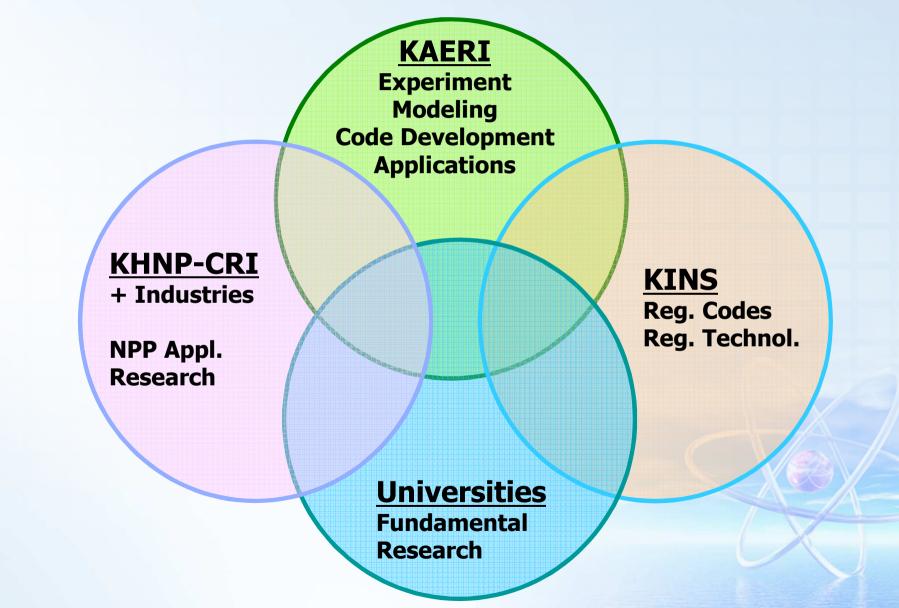
Nuclear Safety R&D

• Scientific investigation and technology development for assessment, verification & improvement of nuclear safety

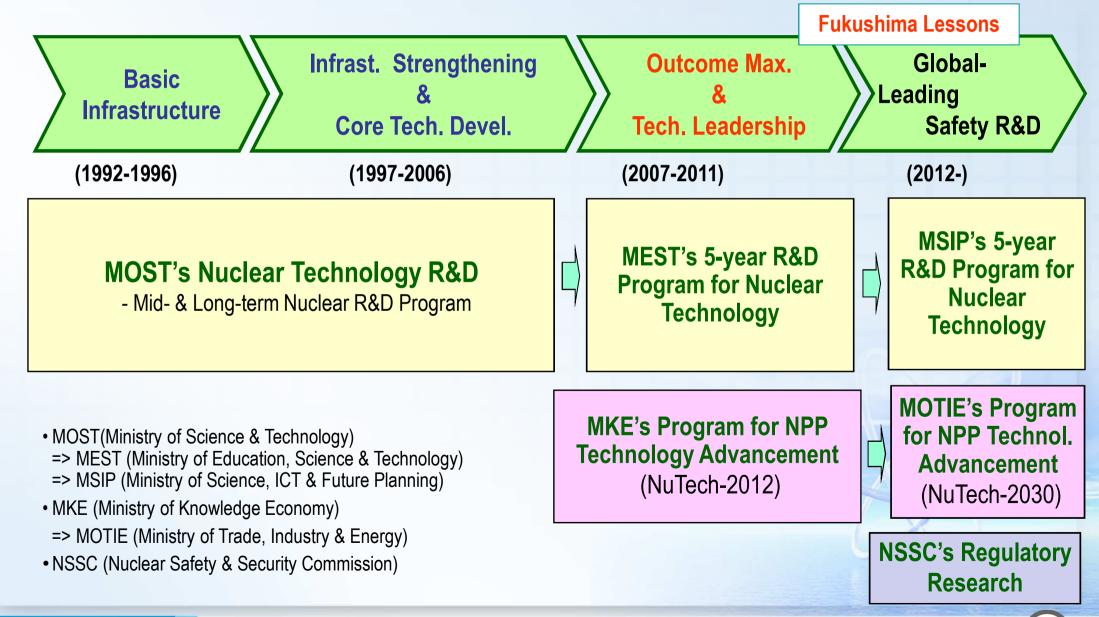
Knowledge-Based Implementation of DID & Nuclear Safety R&D (5)

Important Areas for Nuclear Safety R&D

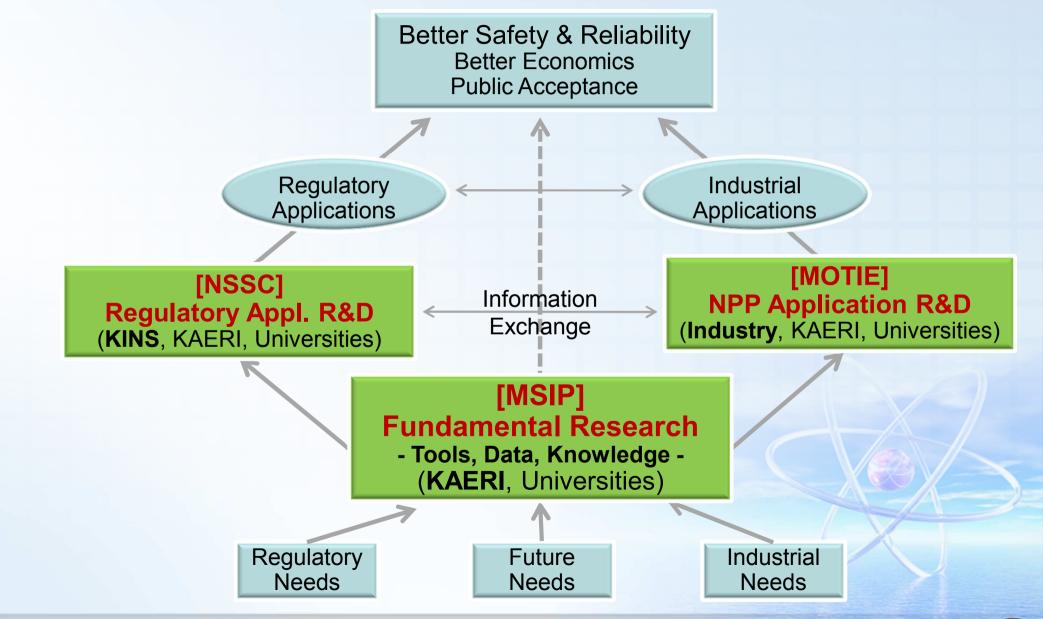
- Strengthening of multiple physical barriers
- Design basis site characteristics and effects of extreme/combined external hazards
- Robustness of electrical systems and ultimate heat sinks
- Severe accident phenomena (hydrogen, fission products, etc.), mitigation measures & management procedures
- Multi-unit accident scenarios & management
- Risk assessments & their applications to NPP design, operation, and accident management
- Passive systems for prevention & mitigation of severe accidents
- Instrumentation & monitoring at deteriorated plant conditions
- Safety of spent fuel storage facilities
- Strengthening of emergency planning & preparedness
- Effects of low-level radiation


Outline

- **Fukushima Accident**
- **Defence in Depth (DID)**
- **Knowledge-Based Implementation of DID & Nuclear Safety R&D**
- Nuclear Safety R&D in Korea
- **Concluding Remarks**


Nuclear Safety R&D in Korea (1)

Major R&D Organizations


Nuclear Safety R&D in Korea (2)

National R&D Programs on Nuclear Safety

Nuclear Safety R&D in Korea (3)

NPP Safety Research & Applications

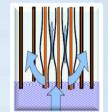
http://www.kaeri.re.kr

Nuclear Safety R&D in Korea (4)

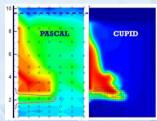
Basic Directions for KAERI's NSR

- Incorporation of Lessons from Fukushima Accident
 - **Beyond DBA or Design Extension Conditions**
 - Severe accident mitigation & management
 - **Dispersion & environmental/human impacts of radioactive materials**
 - **Risk assessment methodology covering external & multi-unit events**
 - Application of passive & inherent safety features
- Production/Supply of Reliable & Best Outputs to Regulator & Industry for Knowledge-Based Decision Making
- Maximum Utilization of Existing R&D Infrastructure
 - Hardware, Software, Manpower, etc
- Close Collaboration with Domestic Organizations & Experts
 - Effective utilization of resources
 - Effective transfer & utilization of the best available knowledge
- Effective International Collaboration
 - Multinational collaboration through OECD/NEA, IAEA, etc.
 - **Bilateral collaboration**
 - Active participation & hosting of international cooperative programs

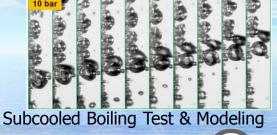
Nuclear Safety R&D in Korea (5)


Thermal-Hydraulic Safety

- Securing Ultimate Heat Sinks for Severe Accident Prevention
 - Integral simulation of extreme situations (e.g., Prolonged SBO) using the ATLAS facility
 - Development/verification/assessment of passive safety features for advanced reactor systems
 - Coolability of deformed fuels: tests & analyses

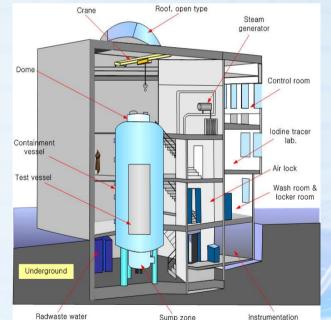

• Advanced Simulation of T/H Behaviors

- Development & application of component T/H analysis code, CUPID
- Coupled analysis of neutronics, component T/H, and system T/H
- Development of advanced physical models based on high-precision experiments



Deformed core + Fuel relocation

Pool Mixing Test & Analysis for Passive System



Nuclear Safety R&D in Korea (6)

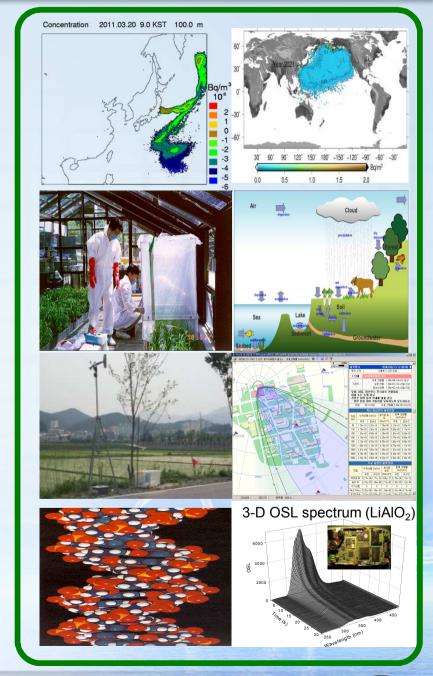
Severe Accident: Develop Effective Mitigation Measures

Develop Severe Accident Analysis Code and Methodology: COMPASS+SPACE

Integrity of Containment: Hydrogen, Filtered Venting, **Fission Product**

Nuclear Safety R&D in Korea (7)

Risk Assessment & Management


- Full-Scope Risk Assessment Framework
 - Internal(including fire/flooding)/ external events (seismic, tsunami, airplane crash, and other external events such as the super typhoon, etc.)
 - Full-power/low-power/shutdown mode PSA
 - Assessment of SFP risks & multi-unit risk
 - New system characteristics: passive systems, digital I&C, etc.
 - Improvement of the PSA engine, FTREX
- Site Risk Profiles for Korean NPPs
- The technical basis for the integrated EOP/SAMG/EDMG and risk-informed Emergency Preparedness

Nuclear Safety R&D in Korea (8)

Radiological Environmental Safety

- Prediction of short & long-ranges air dispersion : FADAS, LADAS codes
- Prediction of marine dispersion : LORAS code
- Radiological dose assessment in rural (agricultural) & urban environments : **ECOREA, METRO-K codes**
- Radiological impact assessment to nonhuman species : K-BIOTA code
- Research about radiation resistancerelated genomics
- Low dose effect of radiation, **H-3** biological effect
- Retrospective radiation dosimetry and measurement

http://www.kaeri.re.kr

Nuclear Safety R&D in Korea (9)

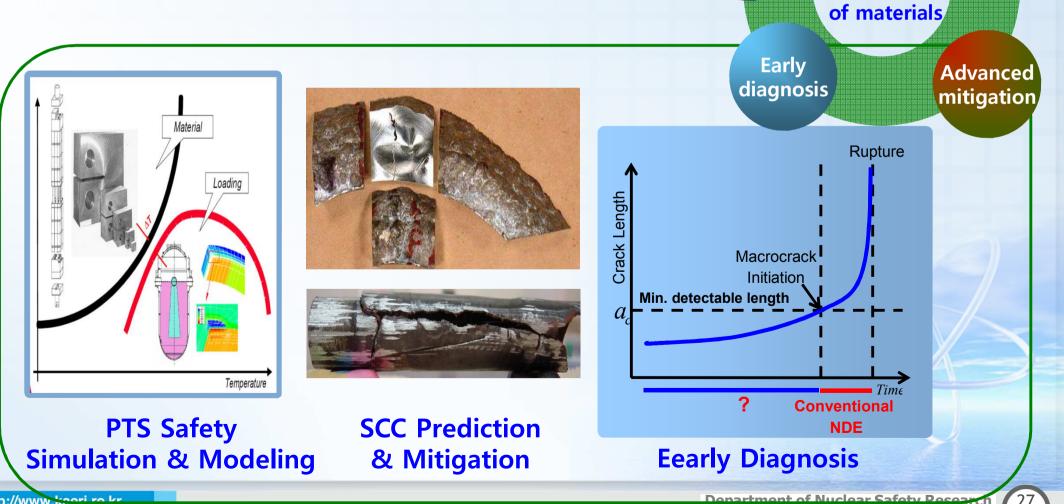
Integrity of RPV

Safety

enhancement

Prediction

of SCC


Simulation

and

modeling

Materials Safety

Enhance Long Term Operation Safety of Nuclear Materials

Nuclear Safety R&D in Korea (10)

International Collaboration

- **Post-Fukushima Activities**
 - Active participation in IAEA/UNSCEAR/NEA programs
 - **Bilateral cooperation with Japanese organizations**

• OECD/NEA Programs

- Active participation of CSNI & CNRA Programs/Projects
- Hosting of selected programs: ISP-50 with ATLAS, SERENA Project with TROI, Rod bundle CFD benchmark with MATiS, etc.
- Proposal of new projects: OECD-ATLAS (proposed), SERENA-2 (under preparation) and others

IAEA Programs

Participation of CRPs in various NSR areas

Bilateral Cooperation with Foreign Organizations

Outline

- **Fukushima Accident**
- **Defence in Depth (DID)**
- **Knowledge-Based Implementation of DID & Nuclear Safety R&D**
- **Nuclear Safety R&D in Korea**

Concluding Remarks

Concluding Remarks

Continuous safety enhancement for existing & new NPPs

- **Knowledge-based implementation of DID for harmonized** prevention & mitigation of severe accidents
 - Investigation/prevention of scenarios leading to severe accidents
 - Understanding & mitigation of severe accident phenomena
 - Minimization of radioactive releases & effective emergency responses

Safety R&D for 'reliable' & 'best-achievable' knowledge

- Proper combination of experiment & analysis technology: Role of experts with capability in both areas
- Underlying physics and advanced models & simulation
- Best knowledge by best people & infrastructure
- Continuous re-evaluation of safety criteria & approaches based on the state-of-the art knowledge
- **Effective domestic & international collaboration**
- **Effective communication of R&D outcomes**

Fukushima lessons incorporated in Korea's NSR Programs

Thank You Very Much for Your Attention !

감사합니다.

Department of Nuclear Safety Research

http://www.kaeri.re.kr