IAEA Department of Nuclear Sciences and Applications Environment Laboratories

The emergency response capabilities of the network of Analytical Laboratories for the Measurement of Environmental Radioactivity ALMERA

IEM9

Assessment and Prognosis in Response to a Nuclear or Radiological Emergency IAEA Action Plan on Nuclear Safety

IAEA International Atomic Energy Agency

ALMERA

Network of Analytical Laboratories for the Measurement of Environmental Radioactivity

Iolanda Osvath, Aurelien Pitois, Sandor Tarjan

IAEA Department of Nuclear Sciences and Applications Environment Laboratories

Summary

Rationale

- Brief introduction of ALMERA
- ALMERA activities
- ALMERA capabilities relevant to rapid response capacity
- Future plans

The ALMERA network

ALMERA

Objective: to maintain a worldwide network of laboratories capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity to the environment

Formal member nomination process

Aim of network was diversified in time, as Member States requested membership for laboratories with many different profiles (different profiles of monitoring, research, academic/training, metrological, etc)

Rationale for increased IAEA support for development of emergency response capabilities

Following the Fukushima Daiichi NPP accident member laboratories expressed interest in increased focus on methodological and analytical quality support for emergency preparedness.

Demands from member laboratories for validated analytical procedures for routine and emergency monitoring have increased.

Increased support for development of emergency response capabilities

Strategy:

- Added focus for methodological developments of rapid methods
 Now Reference Meterials relevant for
- New Reference Materials relevant for emergency situations (e.g. food, biological samples, aerosol filters)
- Proficiency Tests
 - Short reporting time in addition to normal reporting
 - Adapted evaluation criteria
- Increased collaboration with RANET

Network structure and organization

Member laboratories in March 2015

150 laboratories in 84 countries

ALMERA regional group

Member laboratories in March 2015

150 laboratories in 84 countries

Korea Institute of Nuclear Safety (KINS, Korea)

 Development of IAEA procedures for radionuclides determination in environmental samples

IAEA Collaborating Centre/ ALMERA member laboratory

National Food Chain Safety Office, Budapest, Hungary

 Production and characterization of matrix reference materials

IAEA Collaborating Centre/ ALMERA Regional coordinating laboratory Atomic Energy Commission of Syria

> Characterisation of reference materials and radioecology of NORM

ATOMIC ENERGY COMMISSION OF SYRIA IAEA Collaborating Centre

Characterization of Reference Materials and Radioecology of Naturally Occurring Radioactive Materials (NORM)

ALMERA: pool of knowledge and expertise

- Documented technical competence of ALMERA laboratories through participation in proficiency tests
- Wider application of recommended validated methods and methodological harmonization, leading to enhanced worldwide comparability of environmental radioactivity measurement results
- Shared information on available analytical capabilities and expertise, which facilitates the identification of laboratories with competence in specific areas of interest, particularly in emergency situations.

IAEA: coordination and technical support role

The IAEA is committed to assist the ALMERA network of laboratories to maintain their readiness by coordination activities:

- Organization of coordination meetings
- Organization of proficiency tests as a tool for external quality control
- Development of validated analytical methods for routine and emergency monitoring
- Organization of workshops and training courses
- Coordination with other relevant networks and activities

ALMERA coordination meetings

Year	Meeting No.	Location	Participants	MS
1997	1 st	IAEA, Vienna, Austria	38	15
2005	2 nd	ICTP, Trieste, Italy	45	29
2006	3 rd	KINS, Daejon, Republic of Korea	36	17
2007	4 th	ICTP, Trieste, Italy	61	34
2008	5 th	CNEN-IRD, Rio de Janeiro, Brazil	27	17
2009	6 th	Food & Feed Safety Directorate, Budapest, Hungary	51	22
2010	7 th	ERPA, Addis-Ababa, Ethiopia	60	22
2011	8 th	IAEA, Vienna, Austria	79	48
2012	9 th	TAEK, Ankara, Turkey	40	27
2013	10 th	CNSC, Ottawa, Canada	40	23
2014	11 th	IAEA, Vienna, Austria	84	50
2015	12 th	IAEA, Monaco		

ALMERA proficiency tests

Year	ALMERA proficiency test / interlaboratory comparison	Participants	MS
2005	ALMERA proficiency test	53	37
2005	Soil sampling interlaboratory comparison	10	10
2006	Gamma emitting RNs in water, soil and grass	38	29
2007	Artificial and natural RNs in water, soil and spinach	58	46
2007	Po-210 determination in water	36	30
2008	Naturally occurring RNs in phosphogypsum	49	40
2009	Gamma emitting RN in simulated air filters	69	46
2010	Ra-226 in soil and natural radionuclides in water	46	36
2011	Natural and artificial RNs in soil and water	57	41
2012	Natural and artificial RNs in water, hay and soil	58	54
2013	Man-made and natural RNs in water and flour	80	77
2014	RNs in water, seaweed and sediment; gamma spectra	75/109	51/49
2015	RNs in water, brown rice and soil		

<u>Samples</u>

• Water (1-2)

- Spiked tap water for
 - anthropogenic and natural gamma-emitters (Cs-134, Cs-137, Ra-226...)
 - Beta- emitters (H-3, Sr-90)
 - Alpha-emitters (natural U, Am-241, Pu-isotopes)

Water 3 (QC sample)

- Spiked water, the radionuclides and their massic activity are listed in the cover letter of the PT (to check the calibration only)
- Biota samples (spiked or naturally contaminated)
 - Hay (2012), Flour (2013), Seaweed (2014), Brown rice (2015)
 - Radionuclides: Cs-134, Cs-137
- Mineral matrix (natural)
 - Soil, sediment

Preparation of spiked seaweed sample (80 kg)

<u>Steps</u>

- Planning the process
- Study the physical properties of the seaweed
- Homogenisation of the blank
- Radiochemical analysis of the blank (gamma-sp)
- Checking the ampoules (Cs-134, Cs-137)
 - Control weight
 - By point source measurement
- Preparation of the master spike solution (by gravimetric method)
- Spiking a small aliquot (4 kg)
- Homogenisation (intensive blender)
- Dilution with 76 kg blank
- Homogenisation
- Bulk homogeneity test
- Bottling
- Final homogeneity test
- Assigning the target value and uncertainty

Co-production by Korea, Jamaica, Hungary and IAEA!

PT evaluation method

MARB Maximum Acceptable Relative Bias (%)

$$P = \sqrt{\left(\frac{u_{target}}{A_{target}}\right)^2 + \left(\frac{u_{reported}}{A_{reported}}\right)^2} \times 100$$

 $Bias_{relative} \leq k * P$

k = 2.56

Data presentation and interpretation

- S-curve
- Pie chart
- Overall performance
- Bias trend analysis
 - Master sample, master analytes (Cs-134, Cs-137)
 - "Master sample": water
 - "Slave samples": biota, soil
 - Rules
 - Same radio-analytical method
 - Similar activity level
 - The activity should be five times higher than the MDA value (supposing average user laboratory circumstances), ISO 17043
 - Data presentation on the X-Y chart: slave sample versus master sample

Cs-137 in water, 2014

Laboratory code

From 297 reported results 208 (70%) are within ± 5%!

ALMERA vs World-Wide PT performance

Cs-137 in drinking water, 2014 IAEA TEL Pt						
No. of reported values Within 5% %						
All participants	297	208	70.0			
World-wide group	236	162	68.6			
ALMERA	62	46	74.2			

Reporting time for rapid response

ALMERA mandate: "reliable and timely analysis of the samples and data reporting"

Performance of the labs for rapid response

f

REPORTING STATISTICS

Action	Number o
	sample sets
Sample sets sent	60
Received by the participants	97 %
Reported within short term	77 %
Reported until the long term	90 %
deadline	

WW PT performance for different analytes: gap analysis

ALMERA capacity building

Proficiency testing / RM development

Method development

Training courses and workshops

Validated analytical methods

Sample matrix	Nuclides							
	Pu isot.	²⁴¹ Am	⁹⁰ Sr	²¹⁰ Po	²¹⁰ Pb	²²⁶⁺²²⁸ Ra	U	Th
Aerosol	0	0	0					
Soil/sediment	0/0	0/0	0/0					
Terrestrial surface water				0		0		
Milk			0					
Phosphogypsum				0	0	0	0	0

O: Routine procedure

O: Rapid method for emergency monitoring

Rapid method for Pu and Am-241 in soil

A procedure for the rapid determination of Pu isotopes and Am-241 in soil and sediment samples by alpha spectrometry, IAEA Analytical Quality in Nuclear Applications Series No. 11, 2009

IAEA/AQ/11

IAEA Analytical Quality in Nuclear Applications Series No. 11

A Procedure for the Rapid Determination of Pu Isotopes and Am-241 in Soil and Sediment Samples by Alpha Spectrometry

Rapid method for Sr-89 and Sr-90 in milk

Rapid Simultaneous Determination

A Procedure Using Cerenkov

AEA Analytical Quality in Nuclear Applications Series No. 27

of 89Sr and 90Sr in Milk:

IAFA/AO/21

ALMERA

Analytical methods under development

- Proficiency test results show analytical difficulties for the ALMERA laboratories to measure Sr-90 in soil
- Recently, especially after the FDNPP accident, determination of radiostrontium in seawater became an issue of interest.
- Methods under development:
 - Rapid method for the determination of radiostrontium in soil
 - Rapid method for the determination of radiostrontium in seawater

ALMERA workshops and training courses

Year	Title of the IAEA workshop/training course	Trainees	MS
2007	Understanding and evaluating radioanalytical measurement uncertainty	61	34
2009	Uptake of radionuclides into staple crops in the Asian region	17	10
2009	In-situ X-ray fluorescence and gamma ray spectrometry	44	28
2010	Coincidence summing and geometry corrections in gamma spectrometry	32	20
2011	Measurement of natural radionuclides in environmental samples and NORMs and TENORMs by gamma spectrometry: experimental challenges and methodologies	35	27
2012	Alpha spectrometry and radioanalytical techniques	12	12
2012	Measurement results uncertainty estimation and method validation	33	22
2014	Rapid assessment methods for environmental radioactivity	24	21
2014	Rapid determination of Sr-89+90 in milk	12	12
2015	Rapid assessment (ANL) + In-situ gamma (Labor Spiez)		

ALMERA

ALMERA training courses 2014

Rapid Assessment Methods for Environmental Radioactivity, 10 to 21 November 2014 in Argonne National Laboratory, Chicago, USA

- 'Hands-on' training on the validated rapid method for the determination of Pu isotopes and Am-241 in soil and sediment samples using alpha spectrometry
- Field training
- RESRAD assessment codes

'Hands-on' radiochemistry training course, 3-7 November 2014 at KINS, Republic of Korea

- 'Hands-on' training course on the validated rapid method for the determination of Sr-89 and Sr-90 in milk using Cerenkov and scintillation counting

ALMERA training course 2014

Top Stories & Features

Top Stories & Features Topics in Focus Multimedia Statements Press

20 March 2014

IAEA and Argonne National Laboratory Train Scientists on State-ofthe-Art Methods for Rapid Environmental Radioactivity Assessment

Tweet This!

Share on Facebook

Bookmark

Scientists representing laboratories in 21 countries learned state-of-the-art methods for precise and quick assessment of radionuclides in the environment at a training course on rapid assessment methods for environmental radioactivity, held between 10 and 21 March 2014 at the Argonne National Laboratory (ANL) in the US. (Photo: I. Osvath/IAEA) For two weeks in March, 24 scientists representing laboratories in 21 countries learned state-of-the-art methods for precise and quick assessment of radionuclides in the environment. The venue was a training course on rapid assessment methods for environmental radioactivity, held between 10 and 21 March 2014 at the Argonne National Laboratory (ANL) in the US. It was organized by the Environment Laboratories Division in the IAEA Department of Nuclear Sciences and Applications in cooperation with the ANL to particularly benefit scientists working in laboratories belonging to the ALMERA network.

ALMERA is the acronym for Analytical Laboratories for the Measurement of Environmental Radioactivity, a world-wide network of analytical laboratories capable of providing reliable and timely determination of radionuclides in samples used for both routine and emergency environmental monitoring. p>

"The ALMERA network is a valuable resource for the IAEA for ensuring reliable and timely determination of radionuclides in the environment," said Mr. David Osborn, Director of the IAEA Environment Laboratories. "Such a training course is important to reinforce the analytical skills of the personnel in the ALMERA

Practical Training Course on Rapid Determination of Radiostrontium in Milk Using Cerenkov and Scintillation Counting, KINS, Korea, 3-7.11.2014

	c Energy Agency				Search	
ABOUT US 🗸 🛛 OUR WORK	NEWS CENTRE ~	PUBLICATIONS ~	SCIENTIFIC RESOURCES		660000	
Home / News Centre / New	is / Checking for Rad	ionuclides in Dairy Fo	od Products			
Checking for Radionuclides in Dairy Food Products ALMERA Training Course Demonstrates State-of-the-art Method for Detecting Radiostrontium in Milk						
07 November 2014	Experts from the IAEA used for food monito 2014. (Photo Credit: A	and Korea Institute or ring in emergency stute.	of huckear Safety train scientists on a rapid analytica	method to be r november	Related Resources ALMERA Network - Providing Accurate Measurements for Monitoring Radioactivity in the Environment The ALMERA Network ALMERA Network ALMERA Environment Laboratories	

ALMERA training courses 2015

Rapid Assessment Methods for Environmental Radioactivity, 4-15 May 2015 in Argonne National Laboratory, Chicago, USA

In-situ gamma-ray spectrometry training course, 2-6 November 2015 at Spiez Laboratory, Switzerland

Developments

- Capacity building in the network supported through Technical Cooperation projects
- ALMERA labs joined IAEA's Response and Assistance network (RANET)
- RANET labs/environmental capabilities participated in ww PTs
- Short reporting deadline PTs
 - PT for aerosol filters planned
- Development and validation of rapid methods
 - Sr-90 in soil and seawater
- Training
 - Rapid assessment, in-situ gamma, Sr in milk

ALMERA website

ALMERA

http://nucleus.iaea.org/rpst/ReferenceProducts/ALMERA/index.htm