Dose Reconstruction Methods and Source Term Assessment using Data from Monitoring Networks and Mobile Teams – A German Approach

M. Bleher, U. Stöhlker, F. Gering Federal Office for Radiation Protection (BfS), Germany

International Expert's Meeting on Assessment and Prognosis in Response to a Nuclear or Radiological Emergency (IEM9)

| Verantwortung für Mensch und Umwelt | 🔳 🔳 📕

Outline

- German measurement and information system (IMIS) and decision support system RODOS
- Ground contamination maps and dose reconstruction method
- Update of the German Measurement Program
- R+D project: source term reconstruction method
- Experience with spectrometric dose rate probes

| Verantwortung für Mensch und Umwelt | 🔳 🔳 📕 📕 📕

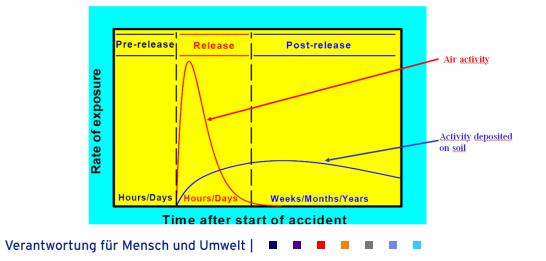
Integrated Measurement and Information System (IMIS) and Decision Support Systems RODOS IMIS RODOS

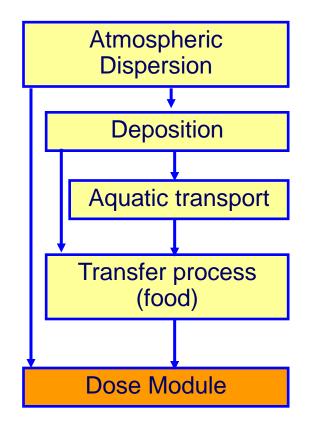
- Dose rate monitoring (BfS)
 - 1750 monitoring stations
- Gamma-spectrometry (DWD)
 - 40 monitoring stations
 - Activity in air
 - Activity on ground
 - Amount of precipitation
- Mobile equipment
 - 6 (BfS) + 16 (Länder)
 - Activity on ground
 - Dose rate

| Verantwortung für Mensch und Umwelt |

- Atmospheric dispersion
- Deposition and Transfer
 - Activity deposited on ground
 - Activity in food
- Dose assessment
 - Inhalation, Ingestion
 - External Exposure

Affected areas? Radio-nuclides?

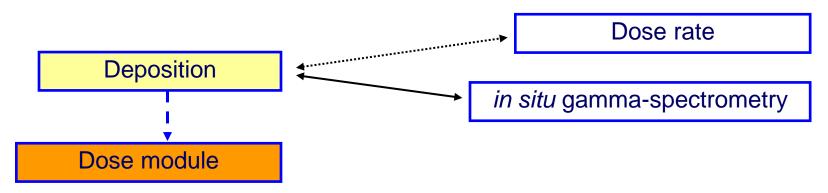

Contamination?



Decision support system RODOS

- Pre-Release
 - Source-term, atmospheric dispersion, deposition conditions
- During cloud passage
 - Source-term, atmospheric dispersion, deposition conditions
 - Measured data:

Air activity, dose rate, in situ gamma-spectrometry



Decision support system RODOS

- After cloud passage
 - Finished atmospheric dispersion and deposition process

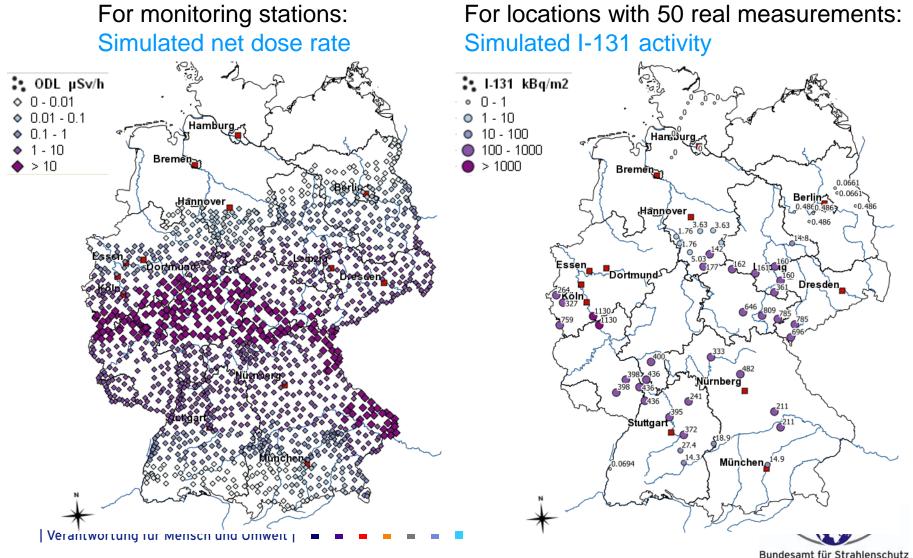
- → Prognostic data for activities deposited on ground are replaced by measured data
 Dose reconstruction method (Data assimilation techniques)
- Module calculations are used to assess doses (ingestion, external exposure) from the activities deposited on ground

| Verantwortung für Mensch und Umwelt | 🔳 🔳 📕 💻 🔳

Ground Contamination Tool M1 Deposition mapping by dose rate and in situ gamma spectrometry data

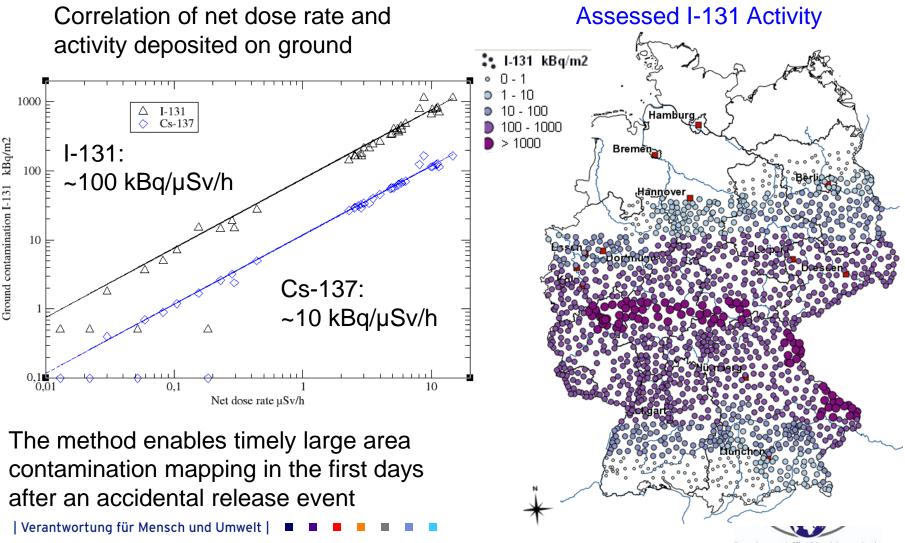
- Main purpose of the Ground Contamination Tool is the determination of ratios between ADER and relevant radionuclides at those locations where **both**, ADER and nuclide specific information is available.
- This allows to estimate the nuclide specific concentration at locations where only ADER is measured.
- Shortly after cloud passage phase, the method enables large area contamination mapping
- Step 1: Supporting points (ADER and insitu data from measurements):
 - Net dose rate: ADER

٠


- Activity on ground for nuclide i (from in situ data): AG(i)
- Nuclide vector: f(i)= AG(i) / {ADER ADER(BG)}
- Step 2: Interpolation points (only at locations where ADER data are measured)
 - Spatial interpolation of nuclide vector f(i)
 - Net dose rate: ADER (derived from measured dose rate)
 - Assessment of activity deposited on ground

 $AG(i) = f(i) \{ADER - ADER(BG)\}$

Bundesamt für Strahlenschutz

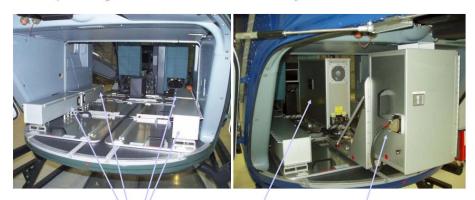

| Verantwortung für Mensch und Umwelt | 🔳 🔳 📕 🔳 📕

Ground Contamination Tool M1 **IMIS exercise with simulated data**

M. Bleher: Dose Reconstruction Methods IEM9/2015

Ground Contamination Tool M1 IMIS exercise with simulated data

M. Bleher: Dose Reconstruction Methods IEM9/2015


Ground Contamination Tool M2 Integration of aero gamma data

Aero gamma spectrometry (2 BfS Systems)

- 4 x 4 l NaI-Detectors
- HPGe detectors

Contamination in rural areas About 50 km²/ flight hour LLD ~ 5 kBq/m² Cs-137 Setup of the german airborne measurement system

4 * 4 L-NaI(TI)-Detectors

Computer

HPGe-Detector

Th-232 [Ba/ka] 150 - 200 100 - 150 75 - 100 50 - 75 30 - 50 20 - 30 10 - 20 0 - 10

Data from C. Strobl, M. Thomas

In combination with method M1 applied for:

Areas near release or with small scaled contamination patterns (wet deposition)

| Verantwortung für Mensch und Umwelt | 🔳 📕 📕 📕

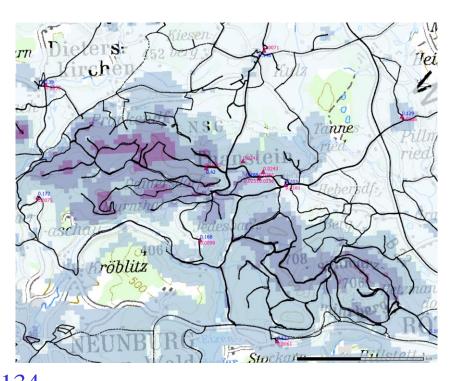
Ground Contamination Tool M3 Integration of vehicle based dose rate data

Vehicle based dose rate measurements (6 BfS Systems)

- mobile teams with plastic scintillator
- measured dose rate every second
- position detection via GPS
- natural background rejection algorithm

```
Contamination in urban areas

About 30 km per unit and hour


Dose rate ~ 0.1 \muSv/h

Activity ~ 20 kBq/m<sup>2</sup> Cs-137 + Cs-134
```

In combination with method M1 applied for: Urban areas near release or with small scaled contamination patterns (wet deposition)

| Verantwortung für Mensch und Umwelt |

M. Bleher: Dose Reconstruction Methods IEM9/2015

Measurement exercise June 2014: Vehicle based dose rate + *in situ* gamma spectrometry data

Expected dose rate range and nuclides Simulated dose rate using RODOS and German release scenarios

Release Bq	I-131	Cs-137	after h
FKA	3 1017	3 1016	21
FKF	2 1016	3 1014	57
FKI, FKH	3 1015	3 1011	57

Maximal dose rate [mSv/h]								
Weather Sou		Source term	Wind di	rection				
			106 m	285 m	1010 m	2040 m		
1 m/s	В	FKA	657	327	71	26		
		FKF	5,9	3,9	1,2	0,57		
		FKI	0,62	0,59	0,39	0,30		
5 m/s	С	FKA	3,0	46	29	12		
		FKF	0,18	2,90	2,0	0,77		
		FKI	0,01	0,12	0,69	0,42		
Verantwortung für Mensch und Umwelt 🔳 🔳 🔳 📕 🔳 🔳 🔳								

3 detectors in the vicinity of NPP to get early spectrometric information

see R&D project DETECT

Bundesamt für Strahlenschutz

EP+R exercise Core-2014

eff.Dosis

[IE-15; 3E-01) [3E-01 ; IE00)

[IE00: 3E00) [3E00; 1E01)

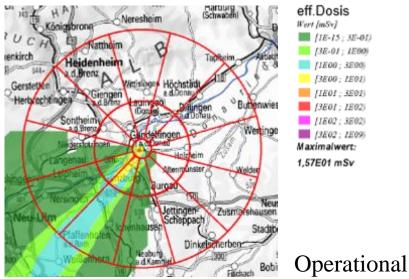
[IE01; 3E01]

[3E01: 1E02] [IE02:3E02] (3E02 ; 1E09)

intervention levels

(OIL) for dose rate:

 $1000 \,\mu Sv/h$

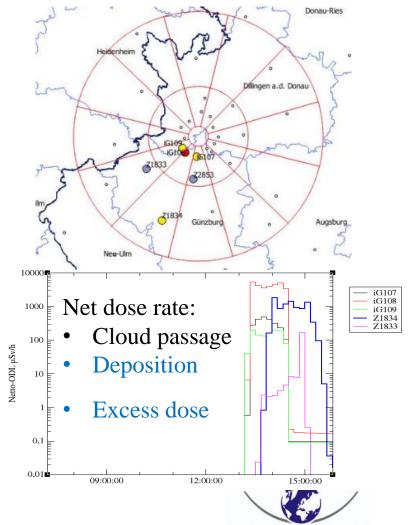

 $100 \,\mu Sv/h$

Maximalwert:

1.57E01 mSv

Wert [mSv]

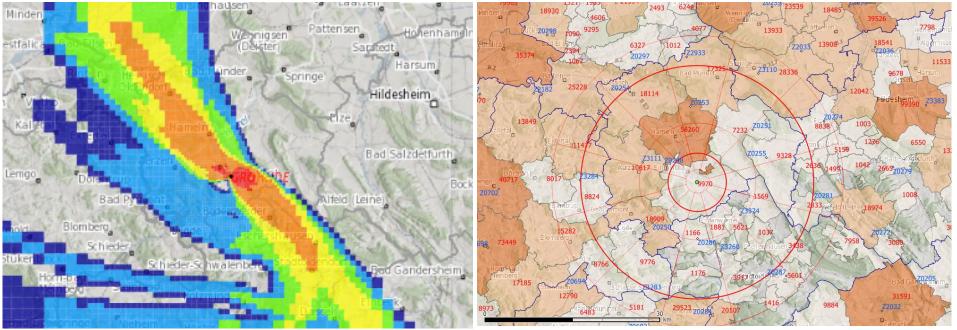
RODOS: Effective dose (7d) Realistic weather conditions Filtered venting scenario


Zones: 2, 10, 25 km Countermeasures

- Evacuation: 5 km zone
- Shielding •
- Pre-distribution of stable Iodine

Verantwortung für Mensch und Umwelt

M. Bleher: Dose Reconstruction Methods IEM9/2015

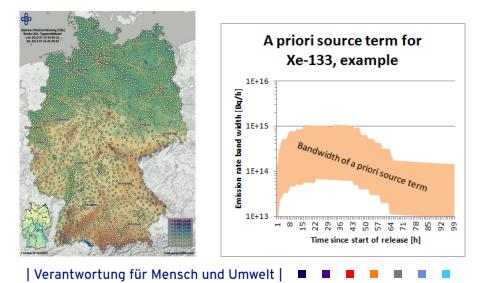

Simulated net dose rate

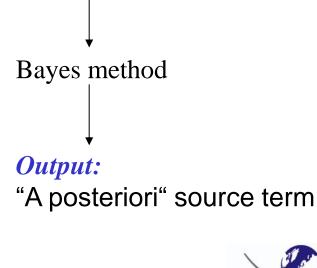
EP+R exercise

RODOS: Effective dose mSv NNP Grohnde, real weather from Severe core melting accident 2015-04-08 08:00 FKA scenario

>= 100 (10 - 100 3 - 10 1 - 3 0,3 - 1 0,1 - 0,3 Locations of monitoring station (blue) Central and middle zone (5 + 20 km) Inhabitants of towns (red)

Additional: FKI and FKF scenario

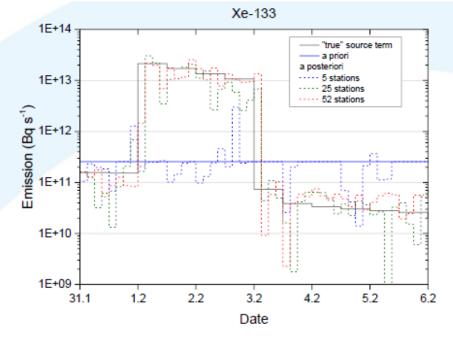

| Verantwortung für Mensch und Umwelt | 🔳 🔳



Source term reconstruction method Data assimilation & inverse Modelling R+D project: Principle of the method

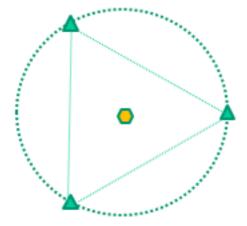
Input Data

- Weather data in the environment of the nuclear facility (past for inverse calculation and future for prognosis).
- **"A priori" source term**: Rough estimation of a source term with bandwidth, using information about the plant and the incident, if available (so called "a priori" data).
- Time dependent measurements of dose rates or nuclide specific activity concentrations in the atmosphere or on ground in the environment of the radioactivity emitting nuclear facility.

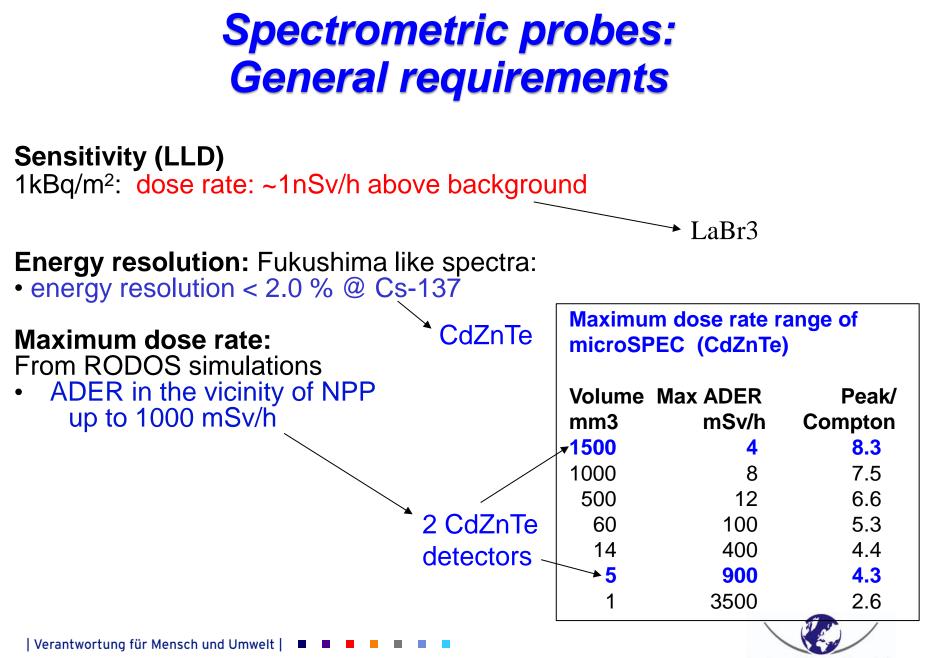


Bundesamt für Strahlenschutz

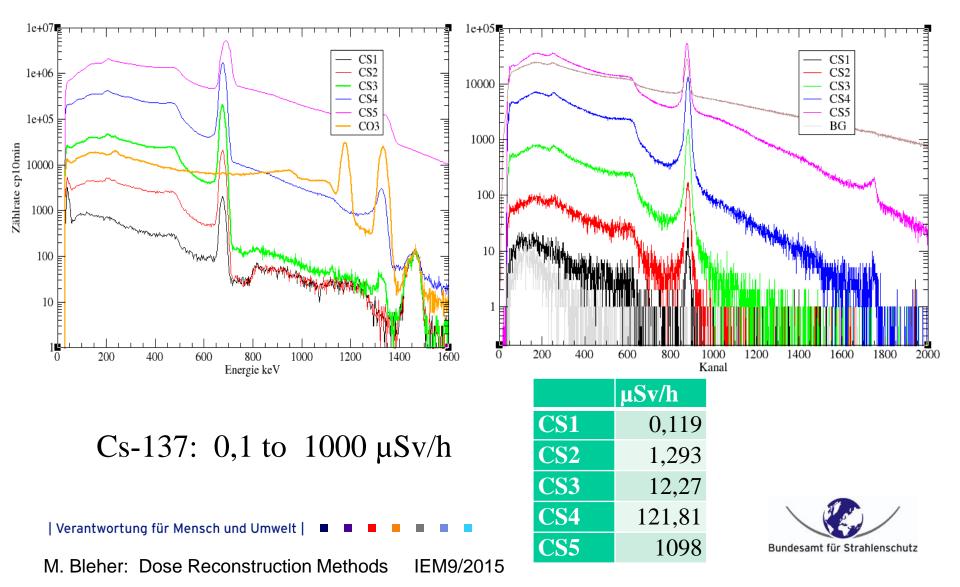
Source term reconstruction method Data assimilation & inverse Modelling R+D project: Principle of the method


Status:

- Module for calculating the "a priori" source term
- Method for radionuclide concentrations (dose rate)
- Module for analyzing the "a posteriori" source term
- Sensitivity studies by use of simulated source term

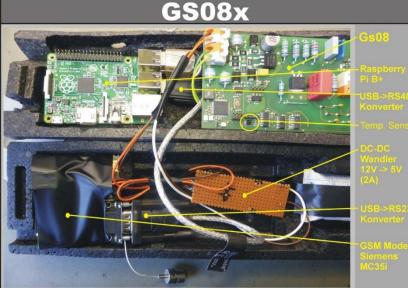

| Verantwortung für Mensch und Umwelt |

M. Bleher: Dose Reconstruction Methods IEM9/2015


Spectrometric probes in the vicinity of NPP to get early information

M. Bleher: Dose Reconstruction Methods IEM9/2015

Calibration experimentSSDL NeuherbergLaBr3 probe (Saphymo)CdZnTe probe (Prototype BfS)



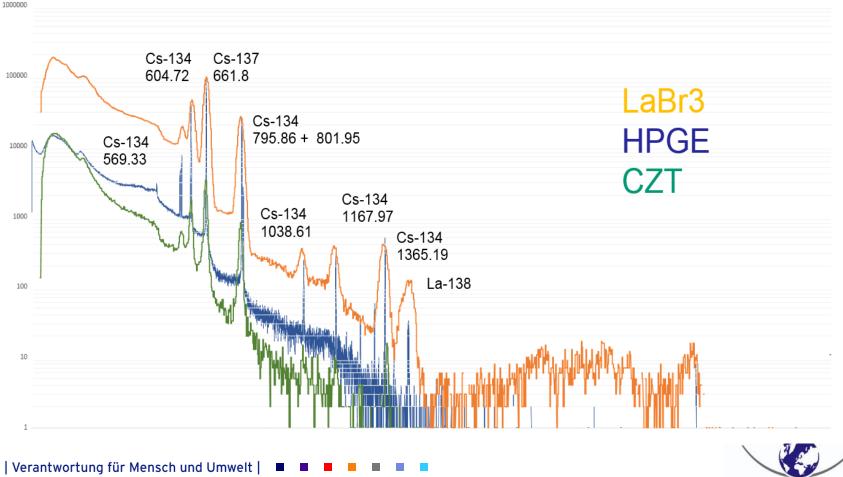
Introduction of spectrometric ADER detectors at BfS

LaBr3 detector 4 km from French NPP Fessenheim

3/2015 LaBr3 System Field test with up to 6 CdZnTe protoypes

| Verantwortung für Mensch und Umwelt |

Comparison of different spectroscopy ADER probes during RANET-2014 Workshop in Fukushima


Stationary Probes at MPJP-KES-01			ODL [µSv/h]			
A=GS08x-2			15,2			
B=GS08x-1			14,9			
C=GS08			15,0			
D=SpectroTracer 2			14,8			
E=SpectroTracer 1			14,2			
Stationary Probes at MPJP-KES-01	Cs-134 [Bq/m2] (B=0)		Cs-137 [Bq/m2] (B=0)	Verhältnis		
F=Insitu (HPGE)	0,66E+0	6	2,06E+06	3,12		
D=SpectroTracer 2 (LaBr ₃)	0,65E+0	6	2,00E+06	3,08		
E=SpectroTracer 1 (LaBr ₃) 0,71E+0		6 2,22E+06		3,13		

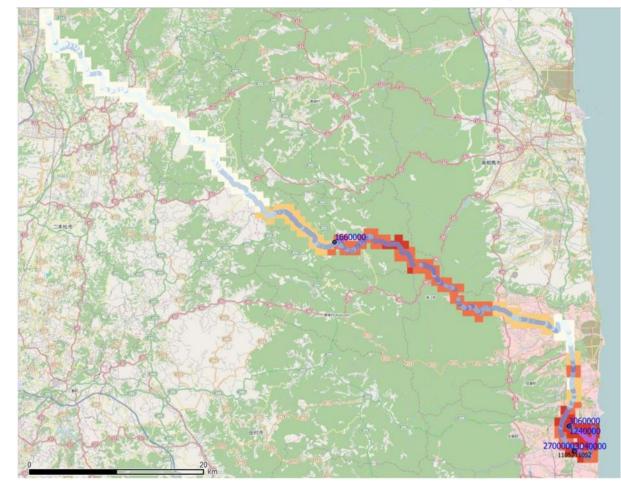
| Verantwortung für Mensch und Umwelt |

Comparison between insitu (HPGe) and spectroscopy ADER (LaBr3) probes RANET-2014 Workshop Fukushima

M. Bleher: Dose Reconstruction Methods IEM9/2015

Ground Contamination Tool RANET-2014 Workshop Fukushima

Ground Contamination Tool applied for Cs-137 and Cs-137 in the Fukushima Daichi area


Location	Cs-134 [Bg/m2] B=1	Cs-137 [Bg/m2] B=1	ADER [µSv/h]	ratio	CS137/ODL	CS134/ODL
2014-11-18						
MPJP-KES-05	9,74E+05	3,04E+06	12,6	3,12	241270	77302
MPJP-OPP-XX	9,86E+05	3,06E+06	15,5	3,10	197419	63613
MPJP-OPP-01	4,01E+05	1,24E+06	5,9	3,09	210169	67966
2014-11-20						
MPJP-OJuHS-01	7,14E+05	2,20E+06	10,8	3,08	203704	66111
MPJP-OJuHS-03	7,38E+05	2,30E+06	10,8	3,12	212963	68333
MPJP-OJuHS-05	5,17E+05	1,60E+06	8,79	3,09	182025	58817
MPJP-KES-01	1,17E+06	3,67E+06	17,5	3,14	209714	66857
MPJP-KES-02	1,14E+06	4,41E+06	20,9	3,87	211005	54545
MPJP-KES-04	1,34E+06	4,23E+06	18,8	3,16	225000	71277
			<u>Mean</u>	3,2	210363	66091
			Stand.Dev.	0,2	16553	6653
			relative Diff.	0,07	0,08	0,10

Verantwortung für Mensch und Umwelt

Ground Contamination Tool RANET-2014 Workshop Fukushima

Ratio Cs-137/ADER = 210363 Bq/m² / μ Sv/h (relaxation length 1cm)

| Verantwortung für Mensch und Umwelt |

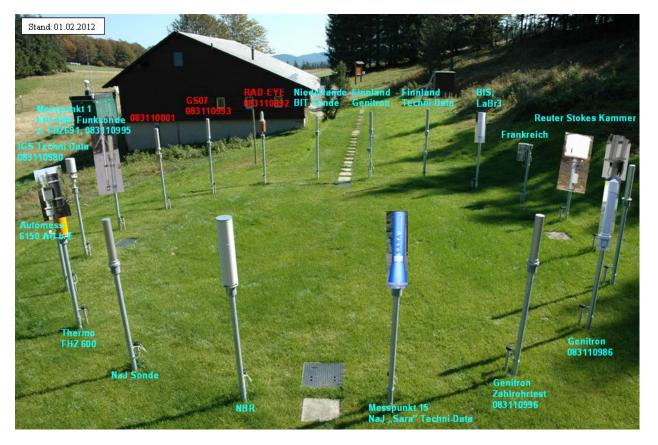
M. Bleher: Dose Reconstruction Methods IEM9/2015

Fukushima Prefecture 17 – 21 November 2014 ADER in 10⁻⁶ Sv/h < 0.3 0.3 - 1 1-3 3 - 10 10 - 30 > 30 Cs-137 Ground contamination in 1000 Bq/m^2 < 100 100 - 300 300 - 1000 1000 - 3000 3000

Cs-137 Ground contamination data from HPGe in Bq/m^2

Measured data from DE-FAT-1 Car-borne monitoring between 2014-11-18T00:00:00Z and 2014-11-18T07:00:00Z

by DE-EBS-1


Summary and outlook

- Combination of dose rate data and spectrometric information is very helpful
 - For dose reconstruction methods in the early phase
 - For source term reconstruction methods
- Combination data from stationary systems and from mobile teams is needed
- Spectrometric dose rate probes with energy resolution of 2 % have the potential to improve the needs of emergency preparedness
- BfS is able to share experience with spectrometric dose rate probes

| Verantwortung für Mensch und Umwelt | 🔳 🔳 📕 💻 🔳 🔳

Thank you!

INTERCAL Long term inter-comparison experiment

> *Mount* Schauinsland near Freiburg

Questions? mbleher@bfs.de

| Verantwortung für Mensch und Umwelt |

